42 resultados para Vaccinia core proteins

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Formation and discharge of dense-core secretory vesicles depend on controlled rearrangement of the core proteins during their assembly and dispersal. The ciliate Tetrahymena thermophila offers a simple system in which the mechanisms may be studied. Here we show that most of the core consists of a set of polypeptides derived proteolytically from five precursors. These share little overall amino acid identity but are nonetheless predicted to have structural similarity. In addition, sites of proteolytic processing are notably conserved and suggest that specific endoproteases as well as carboxypeptidase are involved in core maturation. In vitro binding studies and sequence analysis suggest that the polypeptides bind calcium in vivo. Core assembly and postexocytic dispersal are compartment-specific events. Two likely regulatory factors are proteolytic processing and exposure to calcium. We asked whether these might directly influence the conformations of core proteins. Results using an in vitro chymotrypsin accessibility assay suggest that these factors can induce sequential structural rearrangements. Such progressive changes in polypeptide folding may underlie the mechanisms of assembly and of rapid postexocytic release. The parallels between dense-core vesicles in different systems suggest that similar mechanisms are widespread in this class of organelles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Telomerase is a ribonucleoprotein (RNP) particle required for the replication of telomeres. The RNA component, termed hTR, of human telomerase contains a domain structurally and functionally related to box H/ACA small nucleolar RNAs (snoRNAs). Furthermore, hTR is known to be associated with two core components of H/ACA snoRNPs, hGar1p and Dyskerin (the human counterpart of yeast Cbf5p). To assess the functional importance of the association of hTR with H/ACA snoRNP core proteins, we have attempted to express hTR in a genetically tractable system, Saccharomyces cerevisiae. Both mature non-polyadenylated and polyadenylated forms of hTR accumulate in yeast. The former is associated with all yeast H/ACA snoRNP core proteins, unlike TLC1 RNA, the endogenous RNA component of yeast telomerase. We show that the presence of the H/ACA snoRNP proteins Cbf5p, Nhp2p and Nop10p, but not Gar1p, is required for the accumulation of mature non-polyadenylated hTR in yeast, while accumulation of TLC1 RNA is not affected by the absence of any of these proteins. Our results demonstrate that yeast telomerase is unrelated to H/ACA snoRNPs. In addition, they show that the accumulation in yeast of the mature RNA component of human telomerase depends on its association with three of the four core H/ACA snoRNP proteins. It is likely that this is the case in human cells as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we demonstrate, at an ultrastructural level, the in situ distribution of heterogeneous nuclear RNA transcription sites after microinjection of 5-bromo-UTP (BrUTP) into the cytoplasm of living cells and subsequent postembedding immunoelectron microscopic visualization after different labeling periods. Moreover, immunocytochemical localization of several pre-mRNA transcription and processing factors has been carried out in the same cells. This high-resolution approach allowed us to reveal perichromatin regions as the most important sites of nucleoplasmic RNA transcription and the perichromatin fibrils (PFs) as in situ forms of nascent transcripts. Furthermore, we show that transcription takes place in a rather diffuse pattern, without notable local accumulation of transcription sites. RNA polymerase II, heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins, general transcription factor TFIIH, poly(A) polymerase, splicing factor SC-35, and Sm complex of small nuclear ribonucleoproteins (snRNPs) are associated with PFs. This strongly supports the idea that PFs are also sites of major pre-mRNA processing events. The absence of nascent transcripts, RNA polymerase II, poly(A) polymerase, and hnRNPs within the clusters of interchromatin granules rules out the possibility that this domain plays a role in pre-mRNA transcription and polyadenylation; however, interchromatin granule-associated zones contain RNA polymerase II, TFIIH, and Sm complex of snRNPs and, after longer periods of BrUTP incubation, also Br-labeled RNA. Their role in nuclear functions still remains enigmatic. In the nucleolus, transcription sites occur in the dense fibrillar component. Our fine structural results show that PFs represent the major nucleoplasmic structural domain involved in active pre-mRNA transcriptional and processing events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nucleocapsid of hepatitis B virus (HBV), or HBcAg, is a highly symmetric structure formed by multiple dimers of a single core protein that contains potent T helper epitopes in its 183-aa sequence. Both factors make HBcAg an unusually strong immunogen and an attractive candidate as a carrier for foreign epitopes. The immunodominant c/e1 epitope on the capsid has been suggested as a superior location to convey high immunogenicity to a heterologous sequence. Because of its central position, however, any c/e1 insert disrupts the core protein’s primary sequence; hence, only peptides, or rather small protein fragments seemed to be compatible with particle formation. According to recent structural data, the epitope is located at the tips of prominent surface spikes formed by the very stable dimer interfaces. We therefore reasoned that much larger inserts might be tolerated, provided the individual parts of a corresponding fusion protein could fold independently. Using the green fluorescent protein (GFP) as a model insert, we show that the chimeric protein efficiently forms fluorescent particles; hence, all of its structurally important parts must be properly folded. We also demonstrate that the GFP domains are surface-exposed and that the chimeric particles elicit a potent humoral response against native GFP. Hence, proteins of at least up to 238 aa can be natively displayed on the surface of HBV core particles. Such chimeras may not only be useful as vaccines but may also open the way for high resolution structural analyses of nonassembling proteins by electron microscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclophilin A (CyPA) is specifically incorporated into the virions of HIV-1 and has been shown to enhance significantly an early step of cellular HIV-1 infection. Our preliminary studies implicated CD147 as a receptor for extracellular CyPA. Here, we demonstrate a role for CyPA–CD147 interaction during the early steps of HIV-1 infection. Expression of human CD147 increased infection by HIV-1 under one-cycle conditions. However, susceptibility to infection by viruses lacking CyPA (simian immunodeficiency virus or HIV-1 produced in the presence of cyclosporin A) was unaffected by CD147. Virus-associated CyPA coimmunoprecipitated with CD147 from infected cells. Antibody to CD147 inhibited HIV-1 entry as evidenced by the delay in translocation of the HIV-1 core proteins from the membrane and inhibition of viral reverse transcription. Viruses whose replication did not require CyPA (SIV or mutant HIV-1) were resistant to the inhibitory effect of anti-CD147 antibody. These results suggest that HIV-1 entry depends on an interaction between virus-associated CyPA and CD147 on a target cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The core proteins of large chondroitin sulfate proteoglycans contain a C-type lectin domain. The lectin domain of one of these proteoglycans, versican, was expressed as a recombinant 15-kDa protein and shown to bind to insolubilized fucose and GlcNAc. The lectin domain showed strong binding in a gel blotting assay to a glycoprotein doublet in rat brain extracts. The binding was calcium dependent and abolished by chemical deglycosylation treatment of the ligand glycoprotein. The versican-binding glycoprotein was identified as the cell adhesion protein tenascin-R, and versican and tenascin-R were both found to be localized in the granular layer of rat cerebellum. These results show that the versican lectin domain is a binding domain with a highly targeted specificity. It may allow versican to assemble complexes containing proteoglycan, an adhesion protein, and hyaluronan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA replication of the adenovirus genome complexed with viral core proteins is dependent on the host factor designated template activating factor I (TAF-I) in addition to factors required for replication of the naked genome. Recently, we have purified TAF-I as 39- and 41-kDa polypeptides from HeLa cells. Here we describe the cloning of two human cDNAs encoding TAF-I. Nucleotide sequence analysis revealed that the 39-kDa polypeptide corresponds to the protein encoded by the set gene, which is the part of the putative oncogene associated with acute undifferentiated leukemia when translocated to the can gene. The 41-kDa protein contains the same amino acid sequence as the 39-kDa protein except that short N-terminal regions differ in both proteins. Recombinant proteins, which were purified from extracts of Escherichia coli, expressing the proteins from cloned cDNAs, possessed TAF-I activities in the in vitro replication assay. A particular feature of TAF-I proteins is the presence of a long acidic tail in the C-terminal region, which is thought to be an essential part of the SET-CAN fusion protein. Studies with mutant TAF-I proteins devoid of this acidic region indicated that the acidic region is essential for TAF-I activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vaccinia virus (VV) produces two antigenically and structurally distinct infectious virions, intracellular mature virus (IMV) and extracellular enveloped virus (EEV). Here we have investigated the resistance of EEV and IMV to neutralization by complement in the absence of immune antibodies. When EEV is challenged with complement from the same species as the cells used to grow the virus, EEV is resistant to neutralization by complement, whereas IMV is not. EEV resistance was not a result of EEV protein B5R, despite its similarity to proteins of the regulators of complement activation (RCA) family, or to any of the other EEV proteins tested (A34R, A36R, and A56R gene products). EEV was sensitive to complement when the virus was grown in one species and challenged with complement from a different species, suggesting that complement resistance might be mediated by host RCA incorporated into the EEV outer envelope. This hypothesis was confirmed by several observations: (i) immunoblot analysis revealed that cellular membrane proteins CD46, CD55, CD59, CD71, CD81, and major histocompatibility complex class I antigen were detected in purified EEV but not IMV; (ii) immunoelectron microscopy revealed cellular RCA on the surface of EEV retained on the cell surface; and (iii) EEV derived from rat cells expressing the human RCA CD55 or CD55 and CD59 were more resistant to human complement than EEV derived from control rat cells that expressed neither CD55 nor CD59. These data justify further analysis of the roles of these (and possible other) cellular proteins in EEV biology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

p300 and CBP participate as transcriptional coregulators in the execution of a wide spectrum of cellular gene expression programs controlling cell differentiation, growth and homeostasis. Both proteins act together with sequence-specific transcription factors to modify chromatin structure of target genes via their intrinsic acetyltransferase activity directed towards core histones and some transcription factors. So far, p300-related proteins have been described in animals ranging from Drosophila and Caenorhabditis elegans to humans. In this report, we describe p300/CBP-like polypeptides in the plant Arabidopsis thaliana. Interestingly, homology between animal and plant p300/CBP is largely restricted to a C-terminal segment, about 600 amino acids in length, which encompasses acetyltransferase and E1A-binding domains. We have examined whether this conservation in sequence is paralleled by a conservation in function. The same amino acid residues critical for acetyltransferase activity in human p300 are also critical for the function of one of the plant orthologs. Remarkably, plant proteins bind to the adenovirus E1A protein in a manner recapitulating the binding specificity of mammalian p300/CBP. The striking conservation of an extended segment of p300/CBP suggests that it may constitute a functional entity fulfilling functions that may be essential for all metazoan organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed whether synaptic membrane trafficking proteins are substrates for casein kinase II, calcium/calmodulin-dependent protein kinase II, and cAMP-dependent protein kinase (PKA), three kinases implicated in the modulation of synaptic transmission. Each kinase phosphorylates a specific set of the vesicle proteins syntaxin 1A, N-ethylmaleimide-sensitive factor (NSF), vesicle-associated membrane protein (VAMP), synaptosome-associated 25-kDa protein (SNAP-25), n-sec1, alpha soluble NSF attachment protein (alpha SNAP), and synaptotagmin. VAMP is phosphorylated by calcium/calmodulin-dependent protein kinase II on serine 61. alpha SNAP is phosphorylated by PKA; however, the beta SNAP isoform is phosphorylated only 20% as efficiently. alpha SNAP phosphorylated by PKA binds to the core docking and fusion complex 10 times weaker than the dephosphorylated form. These studies provide a first glimpse at regulatory events that may be important in modulating neurotransmitter release during learning and memory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each of the core histone proteins within the nucleosome has a central “structured” domain that comprises the spool onto which the DNA superhelix is wrapped and an N-terminal “tail” domain in which the structure and molecular interactions have not been rigorously defined. Recent studies have shown that the N-terminal domains of core histones probably contact both DNA and proteins within the nucleus and that these interactions play key roles in the regulation of nuclear processes (such as transcription and replication) and are critical in the formation of the chromatin fiber. An understanding of these complex mechanisms awaits identification of the DNA or protein sites within chromatin contacted by the tail domains. To this end, we have developed a site-specific histone protein–DNA photocross-linking method to identify the DNA binding sites of the N-terminal domains within chromatin complexes. With this approach, we demonstrate that the N-terminal tail of H2A binds DNA at two defined locations within isolated nucleosome cores centered around a position ≈40 bp from the nucleosomal dyad and that this tail probably adopts a defined structure when bound to DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protease-resistant core domain of the neuronal SNARE complex consists of an α-helical bundle similar to the proposed fusogenic core of viral fusion proteins [Skehel, J. J. & Wiley, D. C. (1998) Cell 95, 871–874]. We find that the isolated core of a SNARE complex efficiently fuses artificial bilayers and does so faster than full length SNAREs. Unexpectedly, a dramatic increase in speed results from removal of the N-terminal domain of the t-SNARE syntaxin, which does not affect the rate of assembly of v-t SNARES. In the absence of this negative regulatory domain, the half-time for fusion of an entire population of lipid vesicles by isolated SNARE cores (≈10 min) is compatible with the kinetics of fusion in many cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conserved CDC5 family of Myb-related proteins performs an essential function in cell cycle control at G2/M. Although c-Myb and many Myb-related proteins act as transcription factors, herein, we implicate CDC5 proteins in pre-mRNA splicing. Mammalian CDC5 colocalizes with pre-mRNA splicing factors in the nuclei of mammalian cells, associates with core components of the splicing machinery in nuclear extracts, and interacts with the spliceosome throughout the splicing reaction in vitro. Furthermore, genetic depletion of the homolog of CDC5 in Saccharomyces cerevisiae, CEF1, blocks the first step of pre-mRNA processing in vivo. These data provide evidence that eukaryotic cells require CDC5 proteins for pre-mRNA splicing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

σ32, the product of the rpoH gene in Escherichia coli, provides promoter specificity by interacting with core RNAP. Amino acid sequence alignment of σ32 with other sigma factors in the σ70 family has revealed regions of sequence homology. We have investigated the function of the most highly conserved region, 2.2, using purified products of various rpoH alleles. Core RNAP binding analysis by glycerol gradient sedimentation has revealed reduced core RNAP affinity for one of the mutant σ32 proteins, Q80R. This reduced core interaction is exacerbated in the presence of σ70, which competes with σ32 for binding of core RNAP. When a different but more conserved amino acid was introduced at this position by site-directed mutagenesis (Q80N), this mutant sigma factor still displayed a significant reduction in its core RNAP affinity. Based on these results, we conclude that at least one specific amino acid in region 2.2 is involved in core RNAP interaction.