5 resultados para VZV
em National Center for Biotechnology Information - NCBI
Resumo:
Varicella–zoster virus (VZV) is a human herpesvirus that causes varicella (chicken pox) as a primary infection and, after a variable period of latency in trigeminal and dorsal root ganglia, reactivates to cause herpes zoster (shingles). Both of these conditions may be followed by a variety of neurological complications, especially in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. There have been a number of conflicting reports regarding the cellular location of latent VZV within human ganglia. To address this controversy we examined fixed wax-embedded trigeminal ganglia from 30 individuals obtained at autopsy, including 11 with HIV infection, 2 neonates, and 17 immunocompetent individuals, for the presence of latent VZV. Polymerase chain reaction (PCR), in situ hybridization, and PCR in situ amplification techniques with oligonucleotide probes and primer sequences to VZV genes 18, 21, 29, and 63 were used. VZV DNA in ganglia was detected in 15 individuals by using PCR alone, and in 12 individuals (6 normal non-HIV and 6 positive HIV individuals, but not neonatal ganglia) by using PCR in situ amplification. When in situ hybridization alone was used, 5 HIV-positive individuals and only 1 non-HIV individual showed VZV nucleic acid signals in ganglia. In all of the VZV-positive ganglia examined, VZV nucleic acid was detected in neuronal nuclei. Only occasional nonneuronal cells contained VZV DNA. We conclude from these studies that the neuron is the predominant site of latent VZV in human trigeminal ganglia.
Resumo:
Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus.
Resumo:
The ganglionic cell type in which varicella-zoster virus (VZV) is latent in humans was analyzed by using antibodies raised against in vitro-expressed VZV open reading frame 63 protein. VZV open reading frame 63 protein was detected exclusively in the cytoplasm of neurons of latently infected human trigeminal and thoracic ganglia. This is, to our knowledge, the first identification of a herpesvirus protein expressed during latency in the human nervous system.
Resumo:
Ganglia obtained at autopsy were examined by in situ hybridization from one patient with zoster (also called herpes zoster or shingles), two varicella-zoster virus (VZV)-seropositive patients with clinical evidence of zoster, one VZV-seronegative child, and one fetus. Ganglia positive for VZV had a hybridization signal in both neuronal and nonneuronal satellite cells. Ganglia obtained from the fetus and from the seronegative infant were consistently negative for VZV. Two striking observations were evident regarding the presence of VZV DNA in ganglia obtained from the individual with zoster at the time of death. First, ganglia innervating the sites of reactivation and ganglia innervating adjacent sites yielded strongly positive signals in neurons and satellite cells, whereas ganglia from distant sites were rarely positive. Second, VZV DNA was found in both the nuclei and the cytoplasm of neurons innervating areas of zoster. However, in neurons innervating zoster-free areas, VZV DNA was found only in the nucleus of neurons and their supporting satellite cells. Immunohistochemistry with a fluorescent monoclonal antibody to the VZV glycoprotein gpI, a late virus protein, revealed a positive signal in the cytoplasm of ganglia with clinical evidence of reactivation. These results illustrate that both neuronal and satellite cells become latently infected following primary VZV infection. The presence of VZV DNA and gpI in the cytoplasm of neurons demonstrates productive infection following reactivation at the site of latency.
Resumo:
Envelope glycoproteins of varicella zoster virus (VZV) contain mannose 6-phosphate (Man6P) residues. We now report that Man6P competitively and selectively inhibits infection of cells in vitro by cell-free VZV; furthermore, dephosphorylation of VZV by exposure to alkaline phosphatase rapidly destroys infectivity. Cells are also protected from VZV in a concentration-dependent manner by heparin (ED50 = 0.23 micrograms/ml; 95% confidence limits = 0.16-0.26 microgram/ml) but not by chondroitin sulfate. Both heparin and Man6P are protective only when present about the time of inoculation. Heparin but not Man6P interferes with the attachment of VZV to cell surfaces; moreover, VZV binds to heparin-affinity columns. These data are compatible with a working hypothesis, whereby VZV attaches to cell surfaces by binding to a heparin sulfate proteoglycan. This binding stabilizes VZV, making possible a low-affinity interaction with another Man6P-dependent receptor, which is necessary for viral entry.