2 resultados para VORTICAL FLOWS

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high resolution, second-order central difference method for incompressible flows is presented. The method is based on a recent second-order extension of the classic Lax–Friedrichs scheme introduced for hyperbolic conservation laws (Nessyahu H. & Tadmor E. (1990) J. Comp. Physics. 87, 408-463; Jiang G.-S. & Tadmor E. (1996) UCLA CAM Report 96-36, SIAM J. Sci. Comput., in press) and augmented by a new discrete Hodge projection. The projection is exact, yet the discrete Laplacian operator retains a compact stencil. The scheme is fast, easy to implement, and readily generalizable. Its performance was tested on the standard periodic double shear-layer problem; no spurious vorticity patterns appear when the flow is underresolved. A short discussion of numerical boundary conditions is also given, along with a numerical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of passive scalar transport in a turbulent velocity field leads naturally to the notion of generalized flows, which are families of probability distributions on the space of solutions to the associated ordinary differential equations which no longer satisfy the uniqueness theorem for ordinary differential equations. Two most natural regularizations of this problem, namely the regularization via adding small molecular diffusion and the regularization via smoothing out the velocity field, are considered. White-in-time random velocity fields are used as an example to examine the variety of phenomena that take place when the velocity field is not spatially regular. Three different regimes, characterized by their degrees of compressibility, are isolated in the parameter space. In the regime of intermediate compressibility, the two different regularizations give rise to two different scaling behaviors for the structure functions of the passive scalar. Physically, this means that the scaling depends on Prandtl number. In the other two regimes, the two different regularizations give rise to the same generalized flows even though the sense of convergence can be very different. The “one force, one solution” principle is established for the scalar field in the weakly compressible regime, and for the difference of the scalar in the strongly compressible regime, which is the regime of inverse cascade. Existence and uniqueness of an invariant measure are also proved in these regimes when the transport equation is suitably forced. Finally incomplete self similarity in the sense of Barenblatt and Chorin is established.