15 resultados para VISION

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Praying mantids use binocular cues to judge whether their prey is in striking distance. When there are several moving targets within their binocular visual field, mantids need to solve the correspondence problem. They must select between the possible pairings of retinal images in the two eyes so that they can strike at a single real target. In this study, mantids were presented with two targets in various configurations, and the resulting fixating saccades that precede the strike were analyzed. The distributions of saccades show that mantids consistently prefer one out of several possible matches. Selection is in part guided by the position and the spatiotemporal features of the target image in each eye. Selection also depends upon the binocular disparity of the images, suggesting that insects can perform local binocular computations. The pairing rules ensure that mantids tend to aim at real targets and not at “ghost” targets arising from false matches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that the squirrel monkey, marmoset, and other related New World (NW) monkeys possess three high-frequency alleles at the single X-linked photopigment locus, and that the spectral sensitivity peaks of these alleles are within those delimited by the human red and green pigment genes. The three alleles in the squirrel monkey and marmoset have been sequenced previously. In this study, the three alleles were found and sequenced in the saki monkey, capuchin, and tamarin. Although the capuchin and tamarin belong to the same family as the squirrel monkey and marmoset, the saki monkey belongs to a different family and is one of the species that is most divergent from the squirrel monkey and marmoset, suggesting the presence of the triallelic system in many NW monkeys. The nucleotide sequences of these alleles from the five species studied indicate that gene conversion occurs frequently and has partially or completely homogenized intronic and exonic regions of the alleles in each species, making it appear that a triallelic system arose independently in each of the five species studied. Nevertheless, a detailed analysis suggests that the triallelic system arose only once in the NW monkey lineage, from a middle wavelength (green) opsin gene, and that the amino acid differences at functionally critical sites among alleles have been maintained by natural selection in NW monkeys for >20 million years. Moreover, the two X-linked opsin genes of howler monkeys (a NW monkey genus) were evidently derived from the incorporation of a middle (green) and a long wavelength (red) allele into one chromosome; these two genes together with the (autosomal) blue opsin gene would immediately enable even a male monkey to have trichromatic vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ensemble of neural activity generated by one sensory organ, the lateral eye of the horseshoe crab, Limulus polyphemus. We studied how the neural network of this eye encodes natural scenes by presenting to the model movies recorded with a video camera mounted above the eye of an animal that was exploring its underwater habitat. Model predictions were confirmed by simultaneously recording responses from single optic nerve fibers of the same animal. We report here that the eye transmits to the brain robust “neural images” of objects having the size, contrast, and motion of potential mates. The neural code for such objects is not found in ambiguous messages of individual optic nerve fibers but rather in patterns of coherent activity that extend over small ensembles of nerve fibers and are bound together by stimulus motion. Integrative properties of neurons in the first synaptic layer of the brain appear well suited to detecting the patterns of coherent activity. Neural coding by this relatively simple eye helps explain how horseshoe crabs find mates and may lead to a better understanding of how more complex sensory organs process information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coelacanth, a “living fossil,” lives near the coast of the Comoros archipelago in the Indian Ocean. Living at a depth of about 200 m, the Comoran coelacanth receives only a narrow range of light, at about 480 nm. To detect the entire range of “color” at this depth, the coelacanth appears to use only two closely related paralogous RH1 and RH2 visual pigments with the optimum light sensitivities (λmax) at 478 nm and 485 nm, respectively. The λmax values are shifted about 20 nm toward blue compared with those of the corresponding orthologous pigments. Mutagenesis experiments show that each of these coadapted changes is fully explained by two amino acid replacements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blindsight is the rare and paradoxical ability of some human subjects with occipital lobe brain damage to discriminate unseen stimuli in their clinically blind field defects when forced-choice procedures are used, implying that lesions of striate cortex produce a sharp dissociation between visual performance and visual awareness. Skeptics have argued that this is no different from the behavior of normal subjects at the lower limits of conscious vision, at which such dissociations could arise trivially by using different response criteria during clinical and forced-choice tests. We tested this claim explicitly by measuring the sensitivity of a hemianopic patient independently of his response criterion in yes-no and forced-choice detection tasks with the same stimulus and found that, unlike normal controls, his sensitivity was significantly higher during the forced-choice task. Thus, the dissociation by which blindsight is defined is not simply due to a difference in the patients’ response bias between the two paradigms. This result implies that blindsight is unlike normal, near-threshold vision and that information about the stimulus is processed in blindsighted patients in an unusual way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess whether population screening for impaired vision among older people in the community leads to improvements in vision.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minimum levels of staffing, services, budget, and technology that should be provided by a library specializing in vision science are presented. The scope and coverage of the collection is described as well. These standards may be used by institutions establishing libraries or by accrediting bodies reviewing existing libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of neurons in the primary visual cortex of primates can be activated by stimulation of either eye; moreover, the monocular receptive fields of such neurons are located in about the same region of visual space. These well-known facts imply that binocular convergence in visual cortex can explain our cyclopean view of the world. To test the adequacy of this assumption, we examined how human subjects integrate binocular events in time. Light flashes presented synchronously to both eyes were compared to flashes presented alternately (asynchronously) to one eye and then the other. Subjects perceived very-low-frequency (2 Hz) asynchronous trains as equivalent to synchronous trains flashed at twice the frequency (the prediction based on binocular convergence). However, at higher frequencies of presentation (4-32 Hz), subjects perceived asynchronous and synchronous trains to be increasingly similar. Indeed, at the flicker-fusion frequency (approximately 50 Hz), the apparent difference between the two conditions was only 2%. We suggest that the explanation of these anomalous findings is that we parse visual input into sequential episodes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have elucidated how the absorption of a photon in a rod or cone cell leads to the generation of the amplified neural signal that is transmitted to higher-order visual neurons. Photoexcited visual pigment activates the GTP-binding protein transducin, which in turn stimulates cGMP phosphodiesterase. This enzyme hydrolyzes cGMP, allowing cGMP-gated cationic channels in the surface membrane to close, hyperpolarize the cell, and modulate transmitter release at the synaptic terminal. The kinetics of reactions in the cGMP cascade limit the temporal resolution of the visual system as a whole, while statistical fluctuations in the reactions limit the reliability of detection of dim light. Much interest now focuses on the processes that terminate the light response and dynamically regulate amplification in the cascade, causing the single photon response to be reproducible and allowing the cell to adapt in background light. A light-induced fall in the internal free Ca2+ concentration coordinates negative feedback control of amplification. The fall in Ca2+ stimulates resynthesis of cGMP, antagonizes rhodopsin's catalytic activity, and increases the affinity of the light-regulated cationic channel for cGMP. We are using physiological methods to study the molecular mechanisms that terminate the flash response and mediate adaptation. One approach is to observe transduction in truncated, dialyzed photoreceptor cells whose internal Ca2+ and nucleotide concentrations are under experimental control and to which exogenous proteins can be added. Another approach is to observe transduction in transgenic mouse rods in which specific proteins within the cascade are altered or deleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phototransduction systems in vertebrates and invertebrates share a great deal of similarity in overall strategy but differ significantly in the underlying molecular machinery. Both are rhodopsin-based G protein-coupled signaling cascades displaying exquisite sensitivity and broad dynamic range. However, light activation of vertebrate photoreceptors leads to activation of a cGMP-phosphodiesterase effector and the generation of a hyperpolarizing response. In contrast, activation of invertebrate photoreceptors, like Drosophila, leads to stimulation of phospholipase C and the generation of a depolarizing receptor potential. The comparative study of these two systems of phototransduction offers the opportunity to understand how similar biological problems may be solved by different molecular mechanisms of signal transduction. The study of this process in Drosophila, a system ideally suited to genetic and molecular manipulation, allows us to dissect the function and regulation of such a complex signaling cascade in its normal cellular environment. In this manuscript I review some of our recent findings and the strategies used to dissect this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past 15 years have brought much progress in our understanding of several basic features of primate color vision. There has been particular success in cataloging the spectral properties of the cone photopigments found in retinas of a number of primate species and in elucidating the relationship between cone opsin genes and their photopigment products. Direct studies of color vision show that there are several modal patterns of color vision among groupings of primates: (i) Old World monkeys, apes, and humans all enjoy trichromatic color vision, although the former two groups do not seem prone to the polymorphic variations in color vision that are characteristic of people; (ii) most species of New World monkeys are highly polymorphic, with individual animals having any of several types of dichromatic or trichromatic color vision; (iii) less is known about color vision in prosimians, but evidence suggests that at least some diurnal species have dichromatic color vision; and (iv) some nocturnal primates may lack color vision completely. In many cases the photopigments and photopigment gene arrangements underlying these patterns have been revealed and, as a result, hints are emerging about the evolution of color vision among the primates.