6 resultados para VENTRAL TEGMENTAL AREA
em National Center for Biotechnology Information - NCBI
Resumo:
Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction.
Resumo:
Ataxia-telangiectasia (AT) is a human disease caused by mutations in the ATM gene. The neural phenotype of AT includes progressive cerebellar neurodegeneration, which results in ataxia and eventual motor dysfunction. Surprisingly, mice in which the Atm gene has been inactivated lack distinct behavioral ataxia or pronounced cerebellar degeneration, the hallmarks of the human disease. To determine whether lack of the Atm protein can nonetheless lead to structural abnormalities in the brain, we compared brains from male Atm-deficient mice with male, age-matched controls. Atm-deficient mice exhibited severe degeneration of tyrosine hydroxylase-positive, dopaminergic nigro-striatal neurons, and their terminals in the striatum. This cell loss was accompanied by a large reduction in immunoreactivity for the dopamine transporter in the striatum. A reduction in dopaminergic neurons also was evident in the ventral tegmental area. This effect was selective in that the noradrenergic nucleus locus coeruleus was normal in these mice. Behaviorally, Atm-deficient mice expressed locomotor abnormalities manifested as stride-length asymmetry, which could be corrected by peripheral application of the dopaminergic precursor l-dopa. In addition, these mice were hypersensitive to the dopamine releasing drug d-amphetamine. These results indicate that ATM deficiency can severely affect dopaminergic neurons in the central nervous system and suggest possible strategies for treating this aspect of the disease.
Resumo:
Slow nonselective cation conductances play a central role in determining the excitability of many neurons, but heretofore this channel type has not been analyzed at the single-channel level. Neurotensin (NT) excites cultured dopaminergic neurons from the ventral tegmental area primarily by increasing such a cation conductance. Using the outside–out configuration of the patch clamp, we elicited single-channel activity of this NT-induced cation channel. Channel activity was blocked by the nonpeptide NT antagonist SR48692, indicating that the response was mediated by NT receptors. The channel opened in both solitary form and in bursts. The reversal potential was −4.2 ± 1.7 mV, and the elementary conductance was 31 pS at −67 mV with [Na+]o = 140 mM, [Cs+]o = 5 mM, [Na+]i = 88 mM, and [Cs+]i = 74 mM. Thus, the channel was permeable to both Na+ and Cs+. From these characteristics, it is likely that this channel is responsible for the whole-cell current we studied previously. In guanosine 5′-[γ-thio]triphosphate-loaded cells, NT irreversibly activated about half of the channel activity, suggesting that at least part of the response was mediated by a G protein. Similar channel activity could be induced occasionally in the cell-attached configuration by applying NT outside the patch region.
Resumo:
The mesolimbic dopamine system, which arises in the ventral tegmental area (VTA), is an important neural substrate for opiate reinforcement and addiction. Chronic exposure to opiates is known to produce biochemical adaptations in this brain region. We now show that these adaptations are associated with structural changes in VTA dopamine neurons. Individual VTA neurons in paraformaldehyde-fixed brain sections from control or morphine-treated rats were injected with the fluorescent dye Lucifer yellow. The identity of the injected cells as dopaminergic or nondopaminergic was determined by immunohistochemical labeling of the sections for tyrosine hydroxylase. Chronic morphine treatment resulted in a mean approximately 25% reduction in the area and perimeter of VTA dopamine neurons. This reduction in cell size was prevented by concomitant treatment of rats with naltrexone, an opioid receptor antagonist, as well as by intra-VTA infusion of brain-derived neurotrophic factor. In contrast, chronic morphine treatment did not alter the size of nondopaminergic neurons in the VTA, nor did it affect the total number of dopaminergic neurons in this brain region. The results of these studies provide direct evidence for structural alterations in VTA dopamine neurons as a consequence of chronic opiate exposure, which could contribute to changes in mesolimbic dopamine function associated with addiction.
Resumo:
Several P2X receptor subunits were recently cloned; of these, one was cloned from the rat vas deferens (P2X1) and another from pheochromocytoma (PC12) cells differentiated with nerve growth factor (P2X2). Peptides corresponding to the C-terminal portions of the predicted receptor proteins (P2X1 391-399 and P2X2 460-472) were used to generate antisera in rabbits. The specificities of antisera were determined by staining human embryonic kidney cells stably transfected with either P2X1 or P2X2 receptors and by absorption controls with the cognate peptides. In the vas deferens and the ileal submucosa, P2X1 immunoreactivity (ir) was restricted to smooth muscle, whereas P2X2-ir was restricted to neurons and their processes. Chromaffin cells of the adrenal medulla and PC12 cells contained both P2X1- and P2X2-ir. P2X1-ir was also found in smooth muscle cells of the bladder, cardiac myocytes, and nerve fibers and terminals in the superficial dorsal horn of the spinal cord. In contrast, P2X2-ir was observed in scattered cells of the anterior pituitary, neurons in the hypothalamic arcuate and paraventricular nuclei, and catecholaminergic neurons in the olfactory bulb, the substantia nigra, ventral tegmental area, and locus coeruleus. A plexus of nerve fibers and terminals in the nucleus of the solitary tract contained P2X2-ir. This staining disappeared after nodose ganglionectomy, consistent with a presynaptic function. The location of the P2X1 subunit in smooth muscle is consistent with its role as a postjunctional receptor in autonomic transmission, while in neurons, these receptors appear in both postsynaptic and presynaptic locations.
Resumo:
The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.