3 resultados para VANILLOID ORCHIDS

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

All animals need to sense temperature to avoid hostile environments and to regulate their internal homeostasis. A particularly obvious example is that animals need to avoid damagingly hot stimuli. The mechanisms by which temperature is sensed have until recently been mysterious, but in the last couple of years, we have begun to understand how noxious thermal stimuli are detected by sensory neurons. Heat has been found to open a nonselective cation channel in primary sensory neurons, probably by a direct action. In a separate study, an ion channel gated by capsaicin, the active ingredient of chili peppers, was cloned from sensory neurons. This channel (vanilloid receptor subtype 1, VR1) is gated by heat in a manner similar to the native heat-activated channel, and our current best guess is that this channel is the molecular substrate for the detection of painful heat. Both the heat channel and VR1 are modulated in interesting ways. The response of the heat channel is potentiated by phosphorylation by protein kinase C, whereas VR1 is potentiated by externally applied protons. Protein kinase C is known to be activated by a variety of inflammatory mediators, including bradykinin, whereas extracellular acidification is characteristically produced by anoxia and inflammation. Both modulatory pathways are likely, therefore, to have important physiological correlates in terms of the enhanced pain (hyperalgesia) produced by tissue damage and inflammation. Future work should focus on establishing, in molecular terms, how a single ion channel can detect heat and how the detection threshold can be modulated by hyperalgesic stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capsaicin (vanilloid) receptor, VR1, is a sensory neuron-specific ion channel that serves as a polymodal detector of pain-producing chemical and physical stimuli. It has been proposed that ATP, released from different cell types, initiates the sensation of pain by acting predominantly on nociceptive ionotropic purinoceptors located on sensory nerve terminals. In this study, we examined the effects of extracellular ATP on VR1. In cells expressing VR1, ATP increased the currents evoked by capsaicin or protons through activation of metabotropic P2Y1 receptors in a protein kinase C-dependent pathway. The involvement of Gq/11-coupled metabotropic receptors in the potentiation of VR1 response was confirmed in cells expressing both VR1 and M1 muscarinic acetylcholine receptors. In the presence of ATP, the temperature threshold for VR1 activation was reduced from 42°C to 35°C, such that normally nonpainful thermal stimuli (i.e., normal body temperature) were capable of activating VR1. This represents a novel mechanism through which the large amounts of ATP released from damaged cells in response to tissue trauma might trigger the sensation of pain.