2 resultados para Utterance
em National Center for Biotechnology Information - NCBI
Resumo:
The conversion of text to speech is seen as an analysis of the input text to obtain a common underlying linguistic description, followed by a synthesis of the output speech waveform from this fundamental specification. Hence, the comprehensive linguistic structure serving as the substrate for an utterance must be discovered by analysis from the text. The pronunciation of individual words in unrestricted text is determined by morphological analysis or letter-to-sound conversion, followed by specification of the word-level stress contour. In addition, many text character strings, such as titles, numbers, and acronyms, are abbreviations for normal words, which must be derived. To further refine these pronunciations and to discover the prosodic structure of the utterance, word part of speech must be computed, followed by a phrase-level parsing. From this structure the prosodic structure of the utterance can be determined, which is needed in order to specify the durational framework and fundamental frequency contour of the utterance. In discourse contexts, several factors such as the specification of new and old information, contrast, and pronominal reference can be used to further modify the prosodic specification. When the prosodic correlates have been computed and the segmental sequence is assembled, a complete input suitable for speech synthesis has been determined. Lastly, multilingual systems utilizing rule frameworks are mentioned, and future directions are characterized.
Resumo:
Speech recognition involves three processes: extraction of acoustic indices from the speech signal, estimation of the probability that the observed index string was caused by a hypothesized utterance segment, and determination of the recognized utterance via a search among hypothesized alternatives. This paper is not concerned with the first process. Estimation of the probability of an index string involves a model of index production by any given utterance segment (e.g., a word). Hidden Markov models (HMMs) are used for this purpose [Makhoul, J. & Schwartz, R. (1995) Proc. Natl. Acad. Sci. USA 92, 9956-9963]. Their parameters are state transition probabilities and output probability distributions associated with the transitions. The Baum algorithm that obtains the values of these parameters from speech data via their successive reestimation will be described in this paper. The recognizer wishes to find the most probable utterance that could have caused the observed acoustic index string. That probability is the product of two factors: the probability that the utterance will produce the string and the probability that the speaker will wish to produce the utterance (the language model probability). Even if the vocabulary size is moderate, it is impossible to search for the utterance exhaustively. One practical algorithm is described [Viterbi, A. J. (1967) IEEE Trans. Inf. Theory IT-13, 260-267] that, given the index string, has a high likelihood of finding the most probable utterance.