21 resultados para Uterus.

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen is known to increase progesterone receptor (PR) levels in the wild-type mouse uterus, and this estrogen induction was thought to be important for progesterone action through the PR. The estrogen receptor α knockout (ERKO) mouse uterus was observed to express PR mRNA that cannot be induced by estrogen. Progesterone action was characterized to determine whether it was diminished in ERKO mice. The PR protein is present in the ERKO uterus at 60% of the level measured in a wild-type uterus. The PR-A and PR-B isoforms are both detected on Western blot, and the ratio of isoforms is the same in both genotypes. Although the level of PR is reduced in the ERKO uterus, the receptor level is sufficient to induce genomic responses, since both calcitonin and amphiregulin mRNAs were increased after progesterone treatment. Finally, the ERKO uterus can be induced to undergo a progesterone-dependent decidual response. Surprisingly, the decidual response is estrogen independent in the ERKO, although it remains estrogen dependent in a wild type. These results indicate that estrogen receptor α modulation of PR levels is not necessary for expression of the PR or genomic and physiologic responses to progesterone in the ERKO uterus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, high levels of peptidylglycine α-amidating monooxygenase (PAM), which catalyzes the two-step formation of bioactive α-amidated peptides from their glycine-extended precursors, have been found in the uterus. Expression of PAM was evaluated in the uterus of intact cycling adult female rats and after experimental manipulation of the estrogen status of the rats. During the estrous cycle, PAM mRNA levels exhibited striking changes inversely related to the physiological variations of plasma estrogen levels. The levels of PAM transcripts changed markedly during the estrous cycle, reaching the highest levels at metestrus. There was a 15-fold increase in the abundance of PAM mRNA between metestrus and proestrus. Chronic treatment of ovariectomized rats with 17β-estradiol decreased PAM mRNA levels to values comparable with those found in intact rats at proestrus. Progesterone was without effect on PAM mRNA levels, indicating that the effect was specific for estradiol. In situ hybridization studies were conducted to determine the tissue disposition and cell types expressing PAM. High levels of PAM mRNA were localized in the endometrium at the level of luminal and glandular cells. A weak signal was observed in stromal cells, and the myometrium cells were negative. 17β-Estradiol treatment induced an overall decrease of the hybridization signal, as compared with ovariectomized rats. These results demonstrate the presence of high levels of PAM in the uterus and indicate that estrogens are involved in regulating the expression of the enzyme in this tissue. However, the present study provides no information regarding whether this regulation takes place at the level of transcription or influences mRNA stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed on uteri from estrogen-primed female rats. Bradykinin (BK) (10−8 M) significantly augmented biosynthesis of prostaglandin F2 α (PGF2α) and prostaglandin E2 (PGE2), and this synthesis was completely blocked by NG-monomethyl l-arginine (NMMA) (300 μM), a competitive inhibitor of nitric oxide synthase (NOS). Blockade of prostaglandin synthesis by indomethacin caused rapid dissipation of isometric developed tension (IDT) induced by BK. Blockade of NOS with NMMA had similar but less marked effects. Combining the two inhibitors produced an even more rapid decay in IDT, suggesting that BK-induced NO release maintains IDT by release of prostanoids. The decline of frequency of contraction (FC) was not significantly altered by either indomethacin or NMMA but was markedly accelerated by combination of the inhibitors, which suggests that PGs maintain FC and therefore FC decline is accelerated only when PG production is blocked completely by combination of the two inhibitors of PG synthesis. The increase in IDT induced by oxytocin was unaltered by indomethacin, NMMA or their combination indicating that neither NO nor PGs are involved in the contractions induced by oxytocin. However, the decline in FC with time was significantly reduced by the inhibitor of NOS, NMMA, suggesting that FC decay following oxytocin is caused by NO released by the contractile process. In the case of PGF2α, NMMA resulted in increased initial IDT and FC. The decline in FC was rapid and dramatically inhibited by NMMA. Receptor-mediated contraction by BK, oxytocin, and PGF2α is modulated by NO that maintains IDT by releasing PGs but reduces IDT and FC via cyclic GMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies indicated that the central nervous system induces release of the cardiac hormone atrial natriuretic peptide (ANP) by release of oxytocin from the neurohypophysis. The presence of specific transcripts for the oxytocin receptor was demonstrated in all chambers of the heart by amplification of cDNA by the PCR using specific oligonucleotide primers. Oxytocin receptor mRNA content in the heart is 10 times lower than in the uterus of female rats. Oxytocin receptor transcripts were demonstrated by in situ hybridization in atrial and ventricular sections and confirmed by competitive binding assay using frozen heart sections. Perfusion of female rat hearts for 25 min with Krebs–Henseleit buffer resulted in nearly constant release of ANP. Addition of oxytocin (10−6 M) significantly stimulated ANP release, and an oxytocin receptor antagonist (10−7 and 10−6 M) caused dose-related inhibition of oxytocin-induced ANP release and in the last few minutes of perfusion decreased ANP release below that in control hearts, suggesting that intracardiac oxytocin stimulates ANP release. In contrast, brain natriuretic peptide release was unaltered by oxytocin. During perfusion, heart rate decreased gradually and it was further decreased significantly by oxytocin (10−6 M). This decrease was totally reversed by the oxytocin antagonist (10−6 M) indicating that oxytocin released ANP that directly slowed the heart, probably by release of cyclic GMP. The results indicate that oxytocin receptors mediate the action of oxytocin to release ANP, which slows the heart and reduces its force of contraction to produce a rapid reduction in circulating blood volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23–24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS) causes regression of the fetal Müllerian duct on binding a heteromeric complex of types I and II cell-surface receptors in the fetal urogenital ridge. The MIS type II receptor (MISRII), which provides specificity for MIS, is also expressed in the adult testis, ovary, and uterus. The rat MISRII promoter was cloned to study the molecular mechanisms underlying its temporal and cell-specific expression. The 1.6-kilobase (kb) promoter contained no recognizable TATA or CAAT box, but there was a consensus Sp1 site upstream of the transcription initiation site. Two binding sites for the orphan nuclear receptor steroidogenic factor-1 (SF-1) are occupied in vitro by using nuclear extracts from R2C cells, an MIS-responsive rat Leydig cell line that expresses endogenous MISRII, with differing affinities, indicating that the distal SF-1 site is bound more avidly than is the proximal SF-1 site. R2C cells transfected with MISRII promoter/luciferase reporter constructs show a 12-fold induction with the 1.6-kb fragment and deletion of sequences upstream of −282-bp lowered luciferase expression to one-third. Mutation of both SF-1 sites greatly inhibited luciferase expression, whereas mutation of either site alone resulted in continuing activation by endogenous SF-1, indicating redundancy. In vitro binding and transcriptional analyses suggest that a proximal potential Smad-responsive element and an uncharacterized element also contribute to activation of the MISRII gene. R2C cells and MISRII promoter regulation can now be used to uncover endogenous transcription factors responsible for receptor expression or repression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogens are thought to regulate female reproductive functions by altering gene transcription in target organs primarily via the nuclear estrogen receptor-α (ER-α). By using ER-α “knock-out” (ERKO) mice, we demonstrate herein that a catecholestrogen, 4-hydroxyestradiol-17β (4-OH-E2), and an environmental estrogen, chlordecone (kepone), up-regulate the uterine expression of an estrogen-responsive gene, lactoferrin (LF), independent of ER-α. A primary estrogen, estradiol-17β (E2), did not induce this LF response. An estrogen receptor antagonist, ICI-182,780, or E2 failed to inhibit uterine LF gene expression induced by 4-OH-E2 or kepone in ERKO mice, which suggests that this estrogen signaling pathway is independent of both ER-α and the recently cloned ER-β. 4-OH-E2, but not E2, also stimulated increases in uterine water imbibition and macromolecule uptake in ovariectomized ERKO mice. The results strongly imply the presence of a distinct estrogen-signaling pathway in the mouse uterus that mediates the effects of both physiological and environmental estrogens. This estrogen response pathway will have profound implications for our understanding of the physiology and pathophysiology of female sex steroid hormone actions in target organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here that the rat heart is a site of oxytocin (OT) synthesis and release. Oxytocin was detected in all four chambers of the heart. The highest OT concentration was in the right atrium (2128 ± 114 pg/mg protein), which was 19-fold higher than in rat uterus but 3.3-fold lower than in the hypothalamus. OT concentrations were significantly greater in the right and left atria than in the corresponding ventricles. Furthermore, OT was released into the effluent of isolated, perfused rat heart (34.5 ± 4.7 pg/min) and into the medium of cultured atrial myocytes. Reverse-phase HPLC purification of the heart extracts and heart perfusates revealed a main peak identical with the retention time of synthetic OT. Southern blots of reverse transcription–PCR products from rat heart revealed gene expression of specific OT mRNA. OT immunostaining likewise was found in atrial myocytes and fibroblasts, and the intensity of positive stains from OT receptors paralleled the atrial natriuretic peptide stores. Our findings suggest that heart OT is structurally identical, and therefore derived from, the same gene as the OT that is primarily found in the hypothalamus. Thus, the heart synthesizes and processes a biologically active form of OT. The presence of OT and OT receptor in all of the heart’s chambers suggests an autocrine and/or paracrine role for the peptide. Our finding of abundant OT receptor in atrial myocytes supports our hypothesis that OT, directly and/or via atrial natriuretic peptide release, can regulate the force of cardiac contraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is evidence from both genetic and pharmacologic studies to suggest that the cyclooxygenase-2 (COX-2) enzyme plays a causal role in the development of colorectal cancer. However, little is known about the identity or role of the eicosanoid receptor pathways activated by COX-derived prostaglandins (PG). We previously have reported that COX-2-derived prostacyclin promotes embryo implantation in the mouse uterus via activation of the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) δ. In light of the recent finding that PPARδ is a target of β-catenin transactivation, it is important to determine whether this signaling pathway is operative during the development of colorectal cancer. Analysis of PPARδ mRNA in matched normal and tumor samples revealed that expression of PPARδ, similar to COX-2, is up-regulated in colorectal carcinomas. In situ hybridization studies demonstrate that PPARδ is expressed in normal colon and localized to the epithelial cells at the very tips of the mucosal glands. In contrast, expression of PPARδ mRNA in colorectal tumors was more widespread with increased levels in transformed epithelial cells. Analysis of PPARδ and COX-2 mRNA in serial sections suggested they were colocalized to the same region within a tumor. Finally, transient transfection assays established that endogenously synthesized prostacyclin (PGI2) could serve as a ligand for PPARδ. In addition, the stable PGI2 analog, carbaprostacyclin, and a synthetic PPARδ agonist induced transactivation of endogenous PPARδ in human colon carcinoma cells. We conclude from these observations that PPARδ, similar to COX-2, is aberrantly expressed in colorectal tumors and that endogenous PPARδ is transcriptionally responsive to PGI2. However, the functional consequence of PPARδ activation in colon carcinogenesis still needs to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction of the estrogen receptor/ligand complex with a DNA estrogen response element is known to regulate gene transcription. In turn, specific conformations of the receptor-ligand complex have been postulated to influence unique subsets of estrogen-responsive genes resulting in differential modulation and, ultimately, tissue-selective outcomes. The estrogen receptor ligands raloxifene and tamoxifen have demonstrated such tissue-specific estrogen agonist/antagonist effects. Both agents antagonize the effects of estrogen on mammary tissue while mimicking the actions of estrogen on bone. However, tamoxifen induces significant stimulation of uterine tissue whereas raloxifene does not. We postulate that structural differences between raloxifene and tamoxifen may influence the conformations of their respective receptor/ligand complexes, thereby affecting which estrogen-responsive genes are modulated in various tissues. These structural differences are 4-fold: (A) the presence of phenolic hydroxyls, (B) different substituents on the basic amine, (C) incorporation of the stilbene moiety into a cyclic benzothiophene framework, and (D) the imposition of a carbonyl “hinge” between the basic amine-containing side chain and the olefin. A series of raloxifene analogs that separately exemplify each of these differences have been prepared and evaluated in a series of in vitro and in vivo assays. This strategy has resulted in the development of a pharmacophore model that attributes the differences in effects on the uterus between raloxifene and tamoxifen to a low-energy conformational preference imparting an orthogonal orientation of the basic side chain with respect to the stilbene plane. This three-dimensional array is dictated by a single carbon atom in the hinge region of raloxifene. These data indicate that differences in tissue selective actions among benzothiophene and triarylethylene estrogen receptor modulators can be ascribed to discrete ligand conformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) expression in the uterus is essential for embryo implantation in mice. Here we describe the spatial and temporal regulation of LIF signaling in vivo by using tissues isolated from uteri on different days over the implantation period. During this time, LIF receptors are expressed predominantly in the luminal epithelium (LE) of the uterus. Isolated epithelium responds to LIF by phosphorylation and nuclear translocation of signal transducer and activator of transcription (Stat) 3, but not by an increase in mitogen-activated protein kinase levels. The related cytokines Il-6, ciliary neurotrophic factor, as well as epidermal growth factor, do not activate Stat3, although epidermal growth factor stimulates mitogen-activated protein kinase. In vivo Stat3 activation is induced by LIF alone, resulting in the localization of Stat3 specifically to the nuclei of the LE coinciding with the onset of uterine receptivity. The responsiveness of the LE to LIF is regulated temporally, with Stat activation being restricted to day 4 of pregnancy despite the presence of constant levels of LIF receptor throughout the preimplantation period. Uterine receptivity is therefore under dual control and is regulated by both the onset of LIF expression in the endometrial glands and the release from inhibition of receptor function in the LE.