2 resultados para Usury laws (Canon law)

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented analysis of human and fly life tables proves that with the specified accuracy their entire survival and mortality curves are uniquely determined by a single point (e.g., by the birth mortality q0), according to the law, which is universal for species as remote as humans and flies. Mortality at any age decreases with the birth mortality q0. According to life tables, in the narrow vicinity of a certain q0 value (which is the same for all animals of a given species, independent of their living conditions), the curves change very rapidly and nearly simultaneously for an entire population of different ages. The change is the largest in old age. Because probability to survive to the mean reproductive age quantifies biological fitness and evolution, its universal rapid change with q0 (which changes with living conditions) manifests a new kind of an evolutionary spurt of an entire population. Agreement between theoretical and life table data is explicitly seen in the figures. Analysis of the data on basic metabolism reduces it to the maximal mean lifespan (for animals from invertebrates to mammals), or to the maximal mean fission time (for bacteria), and universally scales them with the total number of body atoms only. Phenomenological origin of this unification and universality of metabolism, survival, and evolution is suggested. Their implications and challenges are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Darwin observed that multiple, lowly organized, rudimentary, or exaggerated structures show increased relative variability. However, the cellular basis for these laws has never been investigated. Some animals, such as the nematode Caenorhabditis elegans, are famous for having organs that possess the same number of cells in all individuals, a property known as eutely. But for most multicellular creatures, the extent of cell number variability is unknown. Here we estimate variability in organ cell number for a variety of animals, plants, slime moulds, and volvocine algae. We find that the mean and variance in cell number obey a power law with an exponent of 2, comparable to Taylor's law in ecological processes. Relative cell number variability, as measured by the coefficient of variation, differs widely across taxa and tissues, but is generally independent of mean cell number among homologous tissues of closely related species. We show that the power law for cell number variability can be explained by stochastic branching process models based on the properties of cell lineages. We also identify taxa in which the precision of developmental control appears to have evolved. We propose that the scale independence of relative cell number variability is maintained by natural selection.