8 resultados para Urine Patches
em National Center for Biotechnology Information - NCBI
Resumo:
Isoprostanes (iPs) are free radical catalyzed prostaglandin isomers. Analysis of individual isomers of PGF2α—F2-iPs—in urine has reflected lipid peroxidation in humans. However, up to 64 F2-iPs may be formed, and it is unknown whether coordinate generation, disposition, and excretion of F2-iPs occurs in humans. To address this issue, we developed methods to measure individual members of the four structural classes of F2-iPs, using liquid chromatography/tandem mass spectrometry (LC/MS/MS), in which sample preparation is minimized. Authentic standards of F2-iPs of classes III, IV, V, and VI were used to identify class-specific ions for multiple reaction monitoring. Using iPF2α-VI as a model compound, we demonstrated the reproducibility of the assay in human urine. Urinary levels of all F2-iPs measured were elevated in patients with familial hypercholesterolemia. However, only three of eight F2-iPs were elevated in patients with congestive heart failure, compared with controls. Paired analyses by GC/MS and LC/MS/MS of iPF2α-VI in hypercholesterolemia and of 8,12-iso-iPF2α-VI in congestive heart failure were highly correlated. This approach will permit high throughput analysis of multiple iPs in human disease.
Resumo:
The discrepancy between the structural longitudinal organization of the parallel-fiber system in the cerebellar cortex and the functional mosaic-like organization of the cortex has provoked controversial theories about the flow of information in the cerebellum. We address this issue by characterizing the spatiotemporal organization of neuronal activity in the cerebellar cortex by using optical imaging of voltage-sensitive dyes in isolated guinea-pig cerebellum. Parallel-fiber stimulation evoked a narrow beam of activity, which propagated along the parallel fibers. Stimulation of the mossy fibers elicited a circular, nonpropagating patch of synchronized activity. These results strongly support the hypothesis that a beam of parallel fibers, activated by a focal group of granule cells, fails to activate the Purkinje cells along most of its length. It is thus the ascending axon of the granule cell, and not its parallel branches, that activates and defines the basic functional modules of the cerebellar cortex.
Resumo:
The fission yeast pob1 gene encodes a protein of 871 amino acids carrying an SH3 domain, a SAM domain, and a PH domain. Gene disruption and construction of a temperature-sensitive pob1 mutant indicated that pob1 is essential for cell growth. Loss of its function leads to quick cessation of cellular elongation. Pob1p is homologous to two functionally redundant Saccharomyces cerevisiae proteins, Boi1p and Boi2p, which are necessary for cell growth and relevant to bud formation. Overexpression of pob1 inhibits cell growth, causing the host cells to become round and swollen. In growing cells, Pob1p locates at cell tips during interphase and translocates near the division plane at cytokinesis. Thus, this protein exhibits intracellular dynamics similar to F-actin patches. However, Pob1p constitutes a layer, rather than patches, at growing cell tips. It generates two split discs flanking the septum at cytokinesis. The pob1-defective cells no longer elongate but swell gradually at the middle, eventually assuming a lemon-like morphology. Analysis using the pob1-ts allele revealed that Pob1p is also essential for cell separation. We speculate that Pob1p is located on growing plasma membrane, possibly through the function of actin patches, and may recruit proteins required for the synthesis of cell wall.
Resumo:
Histological sections of the mammalian striatum reveal a “matrix” that is histochemically distinguishable from patches, or “striosomes”. The latter are cross sections of a compartment that consists primarily of tube-shaped structures radiating through the matrix. As a test of the hypothesis that the function of the striosome/patch compartment includes the mediation of behaviors related to reward, the present study examined electrical self-stimulation of the caudoputamen in rats with electrodes in either of the two compartments. Rats acquired and maintained bar-pressing responses that were contingent on stimulation through electrodes making contact with striosomes/patches more reliably than animals with electrodes terminating exclusively in the matrix. The results provide in vivo evidence that the striosome/patch compartment is functionally differentiated from the matrix compartment: Stimulation centered in or around the striosome/patch compartment but not in the matrix led to rapid acquisition of a new behavior.
Resumo:
To clarify the role of Peyer's patches in oral tolerance induction, BALB/c mice were treated in utero with lymphotoxin β-receptor Ig fusion protein to generate mice lacking Peyer's patches. When these Peyer's patch-null mice were fed 25 mg of ovalbumin (OVA) before systemic immunization, OVA-specific IgG Ab responses in serum and spleen were seen, in marked contrast to low responses in OVA-fed normal mice. Further, high T-cell-proliferative- and delayed-type hypersensitivity responses were seen in Peyer's patch-null mice given oral OVA before systemic challenge. Higher levels of CD4+ T-cell-derived IFN-γ, IL-4, IL-5, and IL-10 syntheses were noted in Peyer's patch-null mice fed OVA, whereas OVA-fed normal mice had suppressed cytokine levels. In contrast, oral administration of trinitrobenzene sulfonic acid (TNBS) to Peyer's patch-null mice resulted in reduced TNBS-specific serum Abs and splenic B cell antitrinitrophenyl Ab-forming cell responses after skin painting with picryl chloride. Further, when delayed-type hypersensitivity and splenic T cell proliferative responses were examined, Peyer's patch-null mice fed TNBS were unresponsive to hapten. Peyer's patch-null mice fed trinitrophenyl-OVA failed to induce systemic unresponsiveness to hapten or protein. These findings show that organized Peyer's patches are required for oral tolerance to proteins, whereas haptens elicit systemic unresponsiveness via the intestinal epithelial cell barrier.
Resumo:
Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.
Resumo:
We investigated the role of the Salmonella typhimurium fimbrial operon formed by the genes lpfABCDE in infection of mice. A mutant in lpfC, the gene encoding the fimbrial outer membrane usher, had an approximately 5-fold increased 50% lethal dose when administered orally to mice. When mice were infected with a mixture of the lpfC mutant and isogenic wild-type S. typhimurium, the lpfC mutant was recovered in lower numbers from Peyer's patches, mesenteric lymph nodes, liver, and spleen. In an organ culture model using murine intestinal loops, lpfC mutants were shown to be associated in lower numbers than wild-type bacteria with Peyer's patches but not with villous intestine. The defect of the lpfC mutant in adhesion to Peyer's patches could be complemented by introducing lpfABCDE on a cosmid. Similarly, heterologous expression of the Salmonella lpf operon in Escherichia coli resulted in an increased adhesion to histological thin sections of Peyer's patch lymph follicles. Electron microscopic analysis of histological sections taken from Peyer's patches after intragastric infection of mice showed that, in contrast to the S. typhimurium wild type, the isogenic lpfC mutant did not destroy M cells of the follicle-associated epithelium. These data show that the Salmonella lpf operon is involved in adhesion to murine Peyer's patches.