4 resultados para Urban pest management

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental shift to a total system approach for crop protection is urgently needed to resolve escalating economic and environmental consequences of combating agricultural pests. Pest management strategies have long been dominated by quests for “silver bullet” products to control pest outbreaks. However, managing undesired variables in ecosystems is similar to that for other systems, including the human body and social orders. Experience in these fields substantiates the fact that therapeutic interventions into any system are effective only for short term relief because these externalities are soon “neutralized” by countermoves within the system. Long term resolutions can be achieved only by restructuring and managing these systems in ways that maximize the array of “built-in” preventive strengths, with therapeutic tactics serving strictly as backups to these natural regulators. To date, we have failed to incorporate this basic principle into the mainstream of pest management science and continue to regress into a foot race with nature. In this report, we establish why a total system approach is essential as the guiding premise of pest management and provide arguments as to how earlier attempts for change and current mainstream initiatives generally fail to follow this principle. We then draw on emerging knowledge about multitrophic level interactions and other specific findings about management of ecosystems to propose a pivotal redirection of pest management strategies that would honor this principle and, thus, be sustainable. Finally, we discuss the potential immense benefits of such a central shift in pest management philosophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent predictions of growth in human populations and food supply suggest that there will be a need to substantially increase food production in the near future. One possible approach to meeting this demand, at least in part, is the control of pests and diseases, which currently cause a 30–40% loss in available crop production. In recent years, strategies for controlling pests and diseases have tended to focus on short-term, single-technology interventions, particularly chemical pesticides. This model frequently applies even where so-called integrated pest management strategies are used because in reality, these often are dominated by single technologies (e.g., biocontrol, host plant resistance, or biopesticides) that are used as replacements for chemicals. Very little attention is given to the interaction or compatibility of the different technologies used. Unfortunately, evidence suggests that such approaches rarely yield satisfactory results and are unlikely to provide sustainable pest control solutions for the future. Drawing on two case histories, this paper demonstrates that by increasing our basic understanding of how individual pest control technologies act and interact, new opportunities for improving pest control can be revealed. This approach stresses the need to break away from the existing single-technology, pesticide-dominated paradigm and to adopt a more ecological approach built around a fundamental understanding of population biology at the local farm level and the true integration of renewable technologies such as host plant resistance and natural biological control, which are available to even the most resource-poor farmers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a nonpeptide mimetic analog of an invertebrate peptide receptor. Benzethonium chloride (Bztc) is an agonist of the SchistoFLRFamide (PDVDHVFLRFamide) receptors found on locust oviducts. Bztc competitively displaces [125I-labeled Y1]SchistoFLRFamide binding to both high- and low-affinity receptors of membrane preparations. Bztc mimics the physiological effects of SchistoFLRFamide on locust oviduct, by inhibiting myogenic and induced contractions in a dose-dependent manner. Bztc is therefore recognized by the binding and activation regions of the SchistoFLRFamide receptors. This discovery provides a unique opportunity within insects to finally target a peptide receptor for the development of future pest management strategies.