1 resultado para Unsupervised learning

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational neuroscience has contributed significantly to our understanding of higher brain function by combining experimental neurobiology, psychophysics, modeling, and mathematical analysis. This article reviews recent advances in a key area: neural coding and information processing. It is shown that synapses are capable of supporting computations based on highly structured temporal codes. Such codes could provide a substrate for unambiguous representations of complex stimuli and be used to solve difficult cognitive tasks, such as the binding problem. Unsupervised learning rules could generate the circuitry required for precise temporal codes. Together, these results indicate that neural systems perform a rich repertoire of computations based on action potential timing.