4 resultados para Unloaded fungiform flagstones
em National Center for Biotechnology Information - NCBI
Resumo:
Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the β-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 2842–2848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and ΔGlu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.
Resumo:
Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.
Resumo:
The electrophoretic export of ATP against the import of ADP in mitochondria bridges the intra- versus extramitochondrial ATP potential gap. Here we report that the electrical nature of the ADP/ATP exchange by the mitochondrial ADP/ATP carrier (AAC) can be directly studied by measuring the electrical currents via capacitive coupling of AAC-containing vesicles on a planar lipid membrane. The currents were induced by the rapid liberation of ATP or ADP with UV flash photolysis from caged nucleotides. Six different transport modes of the AAC were studied: heteroexchange with either ADP or ATP inside the vesicles, initiated by photolysis of caged ATP or ADP; homoexchange with ADPex/ADPin or ATPex/ATPin; and caged ADP or ATP with unloaded vesicles. The heteroexchange produced the largest currents with the longest duration in line with the electrical charge difference ATP4- versus ADP3-. Surprisingly, also in the homoexchange and with unloaded vesicles, small currents were measured with shorter duration. In all three modes with caged ATP, a negative charge moved into the vesicles and with caged ADP it moved out of the vesicles. All currents were completely inhibited by a mixture of the inhibitors of the AAC, carboxyatractyloside and hongkrekate, which proves that the currents are exclusively due to AAC function. The observed charge movements in the heteroexchange system agree with the prediction from transport studies in mitochondria and reconstituted vesicles. The unexpected charge movements in the homoexchange or unloaded systems are interpreted to reveal transmembrane rearrangements of charged sites in the AAC when occupied with ADP or ATP. The results also indicate that not only ATP4- but also ADP3- contribute, albeit in opposite direction, to the electrical nature of the ADP/ATP exchange, which is at variance with former conclusions from biochemical transport studies. These measurements open up new avenues of studying the electrical interactions of ADP and ATP with the AAC.
Resumo:
Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena.