4 resultados para University of South Africa.
em National Center for Biotechnology Information - NCBI
Resumo:
Fanconi anemia (FA) is a rare, genetically heterogeneous autosomal recessive disorder associated with progressive aplastic anemia, congenital abnormalities, and cancer. FA has a very high incidence in the Afrikaner population of South Africa, possibly due to a founder effect. Previously we observed allelic association between polymorphic markers flanking the FA group A gene (FANCA) and disease chromosomes in Afrikaners. We genotyped 26 FA families with microsatellite and single nucleotide polymorphic markers and detected five FANCA haplotypes. Mutation scanning of the FANCA gene revealed association of these haplotypes with four different mutations. The most common was an intragenic deletion of exons 12–31, accounting for 60% of FA chromosomes in 46 unrelated Afrikaner FA patients, while two other mutations accounted for an additional 20%. Screening for these mutations in the European populations ancestral to the Afrikaners detected one patient from the Western Ruhr region of Germany who was heterozygous for the major deletion. The mutation was associated with the same unique FANCA haplotype as in Afrikaner patients. Genealogical investigation of 12 Afrikaner families with FA revealed that all were descended from a French Huguenot couple who arrived at the Cape on June 5, 1688, whereas mutation analysis showed that the carriers of the major mutation were descendants of this same couple. The molecular and genealogical evidence is consistent with transmission of the major mutation to Western Germany and the Cape near the end of the 17th century, confirming the existence of a founder effect for FA in South Africa.
Resumo:
Chloroplast DNA restriction-site variation was surveyed among 40 accessions representing all 11 species of giant senecios (Dendrosenecio, Asteraceae) at all but one known location, plus three outgroup species. Remarkably little variation (only 9 variable sites out of roughly 1000 sites examined) was found among the 40 giant senecio accessions, yet as a group they differ significantly (at 18 sites) from Cineraria deltoidea, the closest known relative. This pattern indicates that the giant senecios underwent a recent dramatic radiation in eastern Africa and evolved from a relatively isolated lineage within the Senecioneae. Biogeographic interpretation of the molecular phylogeny suggests that the giant senecios originated high on Mt. Kilimanjaro, with subsequent dispersion to the Aberdares, Mt. Kenya, and the Cherangani Hills, followed by dispersion westward to the Ruwenzori Mountains, and then south to the Virunga Mountains, Mt. Kahuzi, and Mt. Muhi, but with dispersion back to Mt. Elgon. Geographic radiation was an important antecedent to the diversification in eastern Africa, which primarily involved repeated altitudinal radiation, both up and down the mountains, leading to morphological parallelism in both directions. In general, the plants on a given mountain are more closely related to each other than they are to plants on other mountains, and plants on nearby mountains are more closely related to each other than they are to plants on more distant mountains. The individual steps of the geographic radiation have occurred at various altitudes, some clearly the result of intermountain dispersal. The molecular evidence suggests that two species are extant ancestors to other species on the same or nearby mountains.