10 resultados para United Daughters of the Confederacy. Alabama Division

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the division of eukaryotic cell organelles and up to now neither in animals nor in plants has a gene product been shown to mediate this process. A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant. Seven out of 51 transgenics obtained were knockout plants generated by homologous recombination; they were specifically impeded in plastid division with no detectable effect on mitochondrial division or plant morphology. Implications on the theory of endosymbiosis and on the use of reverse genetics in plants are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proper placement of the Escherichia coli division septum requires the MinE protein. MinE accomplishes this by imparting topological specificity to a division inhibitor coded by the minC and minD genes. As a result, the division inhibitor prevents septation at potential division sites that exist at the cell poles but permits septation at the normal division site at midcell. In this paper, we define two functions of MinE that are required for this effect and present evidence that different domains within the 88-amino acid MinE protein are responsible for each of these two functions. The first domain, responsible for the ability of MinE to counteract the activity of the MinCD division inhibitor, is located in a small region near the N terminus of the protein. The second domain, required for the topological specificity of MinE function, is located in the more distal region of the protein and affects the site specificity of placement of the division septum even when separated from the domain responsible for suppression of the activity of the division inhibitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have sequenced the region of DNA adjacent to and including the flightless (fli) gene of Drosophila melanogaster and molecularly characterized four transcription units within it, which we have named tweety (twe), flightless (fli), dodo (dod), and penguin (pen). We have performed deletion and transgenic analysis to determine the consequences of the quadruple gene removal. Only the flightless gene is vital to the organism; the simultaneous absence of the other three allows the overriding majority of individuals to develop to adulthood and to fly normally. These gene deletion results are evaluated in the context of the redundancy and degeneracy inherent in many genetic networks. Our cDNA analyses and data-base searches reveal that the predicted dodo protein has homologs in other eukaryotes and that it is made up of two different domains. The first, designated WW, is involved in protein-protein interactions and is found in functionally diverse proteins including human dystrophin. The second is involved in accelerating protein folding and unfolding and is found in Escherichia coli in a new family of peptidylprolyl cis-trans isomerases (PPIases; EC 5.2.1.8). In eukaryotes, PPIases occur in the nucleus and the cytoplasm and can form stable associations with transcription factors, receptors, and kinases. Given this particular combination of domains, the dodo protein may well participate in a multisubunit complex involved in the folding and activation of signaling molecules. When we expressed the dodo gene product in Saccharomyces cerevisiae, it rescued the lethal phenotype of the ESS1 cell division gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positioning of the Z ring at the midcell site in Escherichia coli is assured by the min system, which masks polar sites through topological regulation of MinC, an inhibitor of division. To study how MinC inhibits division, we have generated a MalE-MinC fusion that retains full biological activity. We find that MalE-MinC interacts with FtsZ and prevents polymerization without inhibiting FtsZ's GTPase activity. MalE-MinC19 has reduced ability to inhibit division, reduced affinity for FtsZ, and reduced ability to inhibit FtsZ polymerization. These results, along with MinC localization, suggest that MinC rapidly oscillates between the poles of the cell to destabilize FtsZ filaments that have formed before they mature into polar Z rings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1982–1994 National Long-Term Care Surveys indicate an accelerating decline in disability among the U.S. elderly population, suggesting that a 1.5% annual decline in chronic disability for elderly persons is achievable. Furthermore, many risk factors for chronic diseases show improvements, many linked to education, from 1910 to the present. Projections indicate the proportion of persons aged 85–89 with less than 8 years of education will decline from 65% in 1980 to 15% in 2015. Health and socioeconomic status trends are not directly represented in Medicare Trust Fund and Social Security Administration beneficiary projections. Thus, they may have different economic implications from projections directly accounting for health trends. A 1.5% annual disability decline keeps the support ratio (ratio of economically active persons aged 20–64 to the number of chronically disabled persons aged 65+) above its 1994 value, 22:1, when the Hospital Insurance Trust Fund was in fiscal balance, to 2070. With no changes in disability, projections indicate a support ratio in 2070 of 8:1—63% below a cash flow balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent measurements of sedimentation equilibrium and sedimentation velocity have shown that the bacterial cell division protein FtsZ self-associates to form indefinitely long rod-like linear aggregates in the presence of GDP and Mg2+. In the present study, the newly developed technique of non-ideal tracer sedimentation equilibrium was used to measure the effect of high concentrations—up to 150 g/liter—of each of two inert “crowder” proteins, cyanmethemoglobin or BSA, on the thermodynamic activity and state of association of dilute FtsZ under conditions inhibiting (−Mg2+) and promoting (+Mg2+) FtsZ self-association. Analysis of equilibrium gradients of both FtsZ and crowder proteins indicates that, under the conditions of the present experiment, FtsZ interacts with each of the two crowder proteins essentially entirely via steric repulsion, which may be accounted for quantitatively by a simple model in which hemoglobin, albumin, and monomeric FtsZ are modeled as effective spherical hard particles, and each oligomeric species of FtsZ is modeled as an effective hard spherocylinder. The functional dependence of the sedimentation of FtsZ on the concentrations of FtsZ and either crowder indicates that, in the presence of high concentrations of crowder, both the weight-average degree of FtsZ self-association and the range of FtsZ oligomer sizes present in significant abundance are increased substantially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.