7 resultados para Uncovered interest parity,

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Daphniphyllum alkaloids are a group of highly complex polycyclic alkaloids. Examination of the structures if several members of this family of natural products led to a hypothesis about their mode of biosynthesis (depicted in Scheme SI). Based on this hypothetical biosynthetic pathway, a laboratory synthesis was designed that incorporated as a key transformation the novel one-pot transformation of dialdehyde 24 to pentacyclic unsaturated amine 25. This process turned out to be an exceptionally efficient way to construct the pentacyclic nucleus of the Daphniphyllum alkaloids. However, a purely fortuitous discovery, resulting from accidental use of methylamine rather than ammonia, led to a great improvement in the synthesis and suggests an even more attractive possible biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found conditions for saturation mutagenesis by restriction enzyme mediated integration that result in plasmid tagging of disrupted genes. Using this method we selected for mutations in genes that act at checkpoints downstream of the intercellular signaling system that controls encapsulation in Dictyostelium discoideum. One of these genes, mkcA, is a member of the mitogen-activating protein kinase cascade family while the other, regA, is a novel bipartite gene homologous to response regulators in one part and to cyclic nucleotide phosphodiesterases in the other part. Disruption of either of these genes results in partial suppression of the block to spore formation resulting from the loss of the prestalk genes, tagB and tagC. The products of the tag genes have conserved domains of serine proteases attached to ATP-driven transporters, suggesting that they process and export peptide signals. Together, these genes outline an intercellular communication system that coordinates organismal shape with cellular differentiation during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cation-pi interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-pi systems, emphasizing structures of relevance to biological receptors and prototypical heterocycles of the type often of importance in medicinal chemistry. Trends in the data can be rationalized using a relatively simple model that emphasizes the electrostatic component of the cation-pi interaction. In particular, plots of the electrostatic potential surfaces of the relevant aromatics provide useful guidelines for predicting cation-pi interactions in new systems.