17 resultados para Ultrasonografía prenatal

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During early development, interactions between the two eyes are critical in the formation of eye-specific domains within the lateral geniculate nucleus and the visual cortex. When monocular enucleation is done early in prenatal life, it induces remarkable anatomical and functional reorganizations of the visual pathways. Behavioral data have shown a loss in sensitivity to low-spatial-frequency gratings in cats. To correlate the behavioral observations with a possible change in the analysis of contrast at the level of primary visual areas we recorded visual evoked potentials at the 17/18 border in two cats enucleated prenatally (gestational age at enucleation, 39-42 days), three neonatal, two control animals, and one animal with a surgical removal of Y-ganglion fibers. Our results show a strong attenuation in the amplitude of response at all contrast values for gratings of low spatial frequency in prenatally enucleated cats, whereas neonatally enucleated and control animals present responses of comparable amplitude. We conclude that the behavioral results reflect the reduced sensitivity for low frequencies of visual cortical neurons. In addition, we define a critical period for the development of the contrast-sensitivity function that seems to be limited to the prenatal gestation period. We suggest that the prenatal interruption of binocular interactions leads to a functional elimination of the Y-ganglion system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dld gene product, known as dihydrolipoamide dehydrogenase or the E3 component, catalyzes the oxidation of dihydrolipoyl moieties of four mitochondrial multienzyme complexes: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched-chain α-ketoacid dehydrogenase, and the glycine cleavage system. Deficiency of E3 activity in humans results in various degrees of neurological dysfunction and organic acidosis caused by accumulation of branched-chain amino acids and lactic acid. In this study, we have introduced a null mutation into the murine Dld gene (Dldtm1mjp). The heterozygous animals are shown to have approximately half of wild-type activity levels for E3 and all affected multienzyme complexes but are phenotypically normal. In contrast, the Dld−/− class dies prenatally with apparent developmental delay at 7.5 days postcoitum followed by resorption by 9.5 days postcoitum. The Dld−/− embryos cease to develop at a time shortly after implantation into the uterine wall when most of the embryos have begun to gastrulate. This null phenotype provides in vivo evidence for the requirement of a mitochondrial oxidative pathway during the perigastrulation period. Furthermore, the early prenatal lethal condition of the complete deficiency state may explain the low incidence of detectable cases of E3 deficiency in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological evidence has suggested that some pediatric leukemias may be initiated in utero and, for some pairs of identical twins with concordant leukemia, this possibility has been strongly endorsed by molecular studies of clonality. Direct evidence for a prenatal origin can only be derived by prospective or retrospective detection of leukemia-specific molecular abnormalities in fetal or newborn samples. We report a PCR-based method that has been developed to scrutinize neonatal blood spots (Guthrie cards) for the presence of numerically infrequent leukemic cells at birth in individuals who subsequently developed leukemia. We demonstrate that unique or clonotypic MLL-AF4 genomic fusion sequences are present and detectable in neonatal blood spots from individuals who were diagnosed with acute lymphoblastic leukemia at ages 5 months to 2 years and, therefore, have arisen during fetal hematopoiesis in utero. This result provides unequivocal evidence for a prenatal initiation of acute leukemia in young patients. The method should be applicable to other fusion genes in children with common subtypes of leukemia and will be of value in attempts to unravel the natural history and etiology of this major subtype of pediatric cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except two. This manipulation produces high activity from the intact whiskers that contrasts with low activity from the cut whiskers while avoiding any nerve damage. By a computational model, we show that the evolution of neuronal responses in a single barrel-column after this sensory bias is consistent with the synaptic modifications that follow the rules of the Bienenstock, Cooper, and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a moving synaptic modification threshold, θM, that dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of its input synapses. The current value of θM changes proportionally to the square of the neuron's activity averaged over some recent past. In the model of alcohol impaired cortex, the effective θM has been set to a level unattainable by the depressed levels of cortical activity leading to “impaired” synaptic plasticity that is consistent with experimental findings. Based on experimental and computational results, we discuss how elevated θM may be related to (i) reduced levels of neurotransmitters modulating plasticity, (ii) abnormally low expression of N-methyl-d-aspartate receptors (NMDARs), and (iii) the membrane translocation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in adult rat cortex subjected to prenatal alcohol exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Deleted in AZoospermia (DAZ) genes encode potential RNA-binding proteins that are expressed exclusively in prenatal and postnatal germ cells and are strong candidates for human fertility factors. Here we report the identification of an additional member of the DAZ gene family, which we have called BOULE. With the identification of this gene, it is clear that the human DAZ gene family contains at least three members: DAZ, a Y-chromosome gene cluster that arose 30–40 million years ago and whose deletion is linked to infertility in men; DAZL, the “father” of DAZ, a gene that maps to human chromosome 3 and has homologs required for both female and male germ cell development in other organisms; and BOULE, a gene that we propose is the “grandfather” of DAZ and maps to human chromosome 2. Human and mouse BOULE resemble the invertebrate meiotic regulator Boule, the proposed ortholog of DAZ, in sequence and expression pattern and hence likely perform a similar meiotic function. In contrast, the previously identified human DAZ and DAZL are expressed much earlier than BOULE in prenatal germ stem cells and spermatogonia; DAZL also is expressed in female germ cells. These data suggest that homologs of the DAZ gene family can be grouped into two subfamilies (BOULE and DAZL) and that members of the DAZ family evolved from an ancestral meiotic regulator, Boule, to assume distinct, yet overlapping, functions in germ cell development.