7 resultados para Ultra-high-field Mri
em National Center for Biotechnology Information - NCBI
Resumo:
Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex.
Resumo:
The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods.
Resumo:
Recently, a possible clustering of a subset of observed ultra-high energy cosmic rays above ≃40 EeV (4 × 1019 eV) in pairs near the supergalactic plane was reported. We show that a confirmation of this effect would provide information on the origin and nature of these events and, in case of charged primaries, imply interesting constraints on the extragalactic magnetic field. Possible implications for the most common models of ultra-high energy cosmic ray production in the literature are discussed.
Resumo:
The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged 〈Azz〉 element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.
Resumo:
The measurement of dipolar contributions to the splitting of 15N resonances of 1H-15N amide pairs in multidimensional high-field NMR spectra of field-oriented cyanometmyoglobin is reported. The splittings appear as small field-dependent perturbations of normal scalar couplings. Assignment of more than 90 resonances to specific sequential sites in the protein allows correlation of the dipolar contributions with predictions based on the known susceptibility and known structure of the protein. Implications as an additional source of information for protein structure determination in solution are discussed.
Resumo:
The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.
Resumo:
Light-induced radical pairs in deuterated and deuterated plus 15N-substituted Synechococcus lividus cyanobacteria have been studied by transient EPR following pulsed laser excitation. Nuclear quantum beats are observed in the transverse electron magnetization at lower temperatures. Model calculations for the time profiles, evaluated at the high-field emissive maximum of the spectrum, indicate assignment of these coherences to nitrogen nuclei in the primary donor. Thorough investigation of the nuclear modulation patterns can provide detailed information on the electronic structure of the primary donor, providing insight into the mechanism of the primary events of plant photosynthesis.