3 resultados para U.S. government research and development reports
em National Center for Biotechnology Information - NCBI
Resumo:
This paper is a review of recent trends in United States expenditures on research and development (R&D). Real expenditures by both the government and the private sector increased rapidly between the mid-1970s and the mid-1980s, and have since leveled off. This is true of both overall expenditures and expenditures on basic research, as well as funding of academic research. Preliminary estimates indicate that about $170 billion was spent on R&D in the United States in 1995, with ≈60% of that funding coming from the private sector and about 35% from the federal government. In comparison to other countries, we have historically spent more on R&D relative to our economy than other advanced economies, but this advantage appears to be disappearing. If defense-related R&D is excluded, our expenditures relative to the size of the economy are considerably smaller than those of other similar economies.
Resumo:
In previous research, we have found a steep learning curve in the production of semiconductors. We estimated that most production knowledge remains internal to the firm, but that a significant fraction “spills over” to other firms. The existence of such spillovers may justify government actions to stimulate research on semiconductor manufacturing technology. The fact that not all production knowledge spills over, meanwhile, creates opportunities for firms to form joint ventures and slide down their learning curves more efficiently. With these considerations in mind, in 1987 14 leading U.S. semiconductor producers, with the assistance of the U.S. government in the form of $100 million in annual subsidies, formed a research and development (R&D) consortium called Sematech. In previous research, we estimated that Sematech has induced its member firms to lower their R&D spending. This may reflect more sharing and less duplication of research, i.e., more research being done with each R&D dollar. If this is the case, then Sematech members may wish to replace any funding withdrawn by the U.S. government. This in turn would imply that the U.S. government’s contributions to Sematech do not induce more semiconductor research than would otherwise occur.
Resumo:
Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homologue U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homologue Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. In this report, we show that Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages.