4 resultados para Type area
em National Center for Biotechnology Information - NCBI
Resumo:
We report characterization of a human T-cell lymphotropic virus type II (HTLV-II) isolated from an interleukin 2-dependent CD8 T-cell line derived from peripheral blood mononuclear cells of a healthy, HTLV-II-seropositive female Bakola Pygmy, aged 59, living in a remote equatorial forest area in south Cameroon. This HTLLV-II isolate, designated PYGCAM-1, reacted in an indirect immunofluorescence assay with HTLV-II and HTLV-I polyclonal antibodies and with an HTLV-I/II gp46 monoclonal antibody but not with HTLV-I gag p19 or p24 monoclonal antibodies. The cell line produced HTLV-I/II p24 core antigen and retroviral particles. The entire env gene (1462 bp) and most of the long terminal repeat (715 bp) of the PYGCAM-1 provirus were amplified by the polymerase chain reaction using HTLV-II-specific primers. Comparison with the long terminal repeat and envelope sequences of prototype HTLV-II strains indicated that PYGCAM-1 belongs to the subtype B group, as it has only 0.5-2% nucleotide divergence from HTLV-II B strains. The finding of antibodies to HTLV-II in sera taken from the father of the woman in 1984 and from three unrelated members of the same population strongly suggests that PYGCAM-1 is a genuine HTLV-II that has been present in this isolated population for a long time. The low genetic divergence of this African isolate from American isolates raises questions about the genetic variability over time and the origin and dissemination of HTLV-II, hitherto considered to be predominantly a New World virus.
Resumo:
Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (≈5 × 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (≈1 μm) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (≈100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form sheets of electronic paper.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus.
Resumo:
The Fc gamma receptor-associated gamma and zeta subunits contain a conserved cytoplasmic motif, termed the immunoglobulin gene tyrosine activation motif, which contains a pair of YXXL sequences. The tyrosine residues within these YXXL sequences have been shown to be required for transduction of a phagocytic signal. We have previously reported that the gamma subunit of the type IIIA Fc gamma receptor (Fc gamma RIIIA) is approximately 6 times more efficient in mediating phagocytosis than the zeta subunit of Fc gamma RIIIA. By exchanging regions of the cytoplasmic domains of the homologous gamma and zeta chains, we observed that the cytoplasmic area of the gamma chain bearing a pair of the conserved YXXL sequences is important in phagocytic signaling. Further specificity of phagocytic signaling is largely determined by the two internal XX amino acids in the YXXL sequences. In contrast, the flanking amino acids of the YXXL sequences including the seven intervening amino acids between the two YXXL sequences do not significantly affect the phagocytic signal. Furthermore, the protein-tyrosine kinase Syk, but not the related kinase ZAP-70, stimulated Fc gamma RIIIA-mediated phagocytosis. ZAP-70, however, increased phagocytosis when coexpressed with the Src family kinase Fyn. These data demonstrate the importance of the two specific amino acids within the gamma subunit YXXL cytoplasmic sequences in phagocytic signaling and explain the difference in phagocytic efficiency of the gamma and zeta chains. These results indicate the importance of Syk in Fc gamma RIIIA-mediated phagocytosis and demonstrate that ZAP-70 and syk differ in their requirement for a Src-related kinase in signal transduction.