9 resultados para Tripartite Altruism

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) belong to the Cucumovirus genus. They have a tripartite genome consisting of single-stranded RNAs, designated 1, 2, and 3. Previous studies have shown that viable pseudorecombinants could be created in vitro by reciprocal exchanges between CMV and TAV RNA 3, but exchanges of RNAs 1 and 2 were replication deficient. When we coinoculated CMV RNAs 2 and 3 along with TAV RNAs 1 and 2 onto Nicotiana benthamiana, a hybrid quadripartite virus appeared that consisted of TAV RNA 1, CMV RNAs 2 and 3, and a distinctive chimeric RNA originating from a recombination between CMV RNA 2 and the 3′-terminal 320 nucleotides of TAV RNA 2. This hybrid arose by means of segment reassortment and RNA recombination to produce an interspecific hybrid with the TAV helicase subunit and the CMV polymerase subunit. To our knowledge, this is the first report demonstrating the evolution of a new plant or animal virus strain containing an interspecific hybrid replicase complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For almost a century, events relating to the evolutionary origin of endosperm, a unique embryo-nourishing tissue that is essential to the reproductive process in flowering plants, have remained a mystery. Integration of recent advances in phylogenetic reconstruction, comparative reproductive biology, and genetic theory can be used to elucidate the evolutionary events and forces associated with the establishment of endosperm. Endosperm is shown to be derived from one of two embryos formed during a rudimentary process of "double fertilization" that evolved in the ancestors of angiosperms. Acquisition of embryo-nourishing behavior (with accompanying loss of individual fitness) by this supernumerary fertilization product was dependent upon compensatory gains in the inclusive fitness of related embryos. The result of the loss of individual fitness by one of the two original products of double fertilization was the establishment of endosperm, a highly modified embryo/organism that reproduces cryptically through behavior that enhances the fitness of its associated embryo within a seed. Finally, although triploid endosperm remains a synapomorphy of angiosperms, inclusive fitness analysis demonstrates that the embryo-nourishing properties of endosperm initially evolved in a diploid condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ligand-specific molecular switches composed of RNA were created by coupling preexisting catalytic and receptor domains via structural bridges. Binding of ligand to the receptor triggers a conformational change within the bridge, and this structural reorganization dictates the activity of the adjoining ribozyme. The modular nature of these tripartite constructs makes possible the rapid construction of precision RNA molecular switches that trigger only in the presence of their corresponding ligand. By using similar enzyme engineering strategies, new RNA switches can be made to operate as designer molecular sensors or as a new class of genetic control elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C- terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cells using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yeast co-expressing rat APOBEC-1 and a fragment of human apolipoprotein B (apoB) mRNA assembled functional editosomes and deaminated C6666 to U in a mooring sequence-dependent fashion. The occurrence of APOBEC-1-complementing proteins suggested a naturally occurring mRNA editing mechanism in yeast. Previously, a hidden Markov model identified seven yeast genes encoding proteins possessing putative zinc-dependent deaminase motifs. Here, only CDD1, a cytidine deaminase, is shown to have the capacity to carry out C→U editing on a reporter mRNA. This is only the second report of a cytidine deaminase that can use mRNA as a substrate. CDD1-dependent editing was growth phase regulated and demonstrated mooring sequence-dependent editing activity. Candidate yeast mRNA substrates were identified based on their homology with the mooring sequence-containing tripartite motif at the editing site of apoB mRNA and their ability to be edited by ectopically expressed APOBEC-1. Naturally occurring yeast mRNAs edited to a significant extent by CDD1 were, however, not detected. We propose that CDD1 be designated an orphan C→U editase until its native RNA substrate, if any, can be identified and that it be added to the CDAR (cytidine deaminase acting on RNA) family of editing enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper argues that historical works in pharmacy are important tools for the clinician as well as the historian. With this as its operative premise, delineating the tripartite aspects of pharmacy as a business enterprise, a science, and a profession provides a conceptual framework for primary and secondary resource collecting. A brief history and guide to those materials most essential to a historical collection in pharmacy follows. Issues such as availability and cost are discussed and summarized in checklist form. In addition, a glossary of important terms is provided as well as a list of all the major U.S. dispensatories and their various editions. This paper is intended to serve as a resource for those interested in collecting historical materials in pharmacy and pharmaco-therapeutics as well as provide a history that gives context to these classics in the field. This should provide a rationale for selective retrospective collection development in pharmacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNALeu gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cucumber mosaic cucumovirus (CMV) infects a very wide range of plant species (>1000 species). We recently demonstrated that a previously undescribed gene (2b) encoded by RNA 2 of the tripartite RNA genome of CMV is required for systemic virus spread and disease induction in its hosts. Herein we report that when this CMV gene is replaced by its homologue from tomato aspermy cucumovirus (TAV), the resultant hybrid virus is significantly more virulent, induces earlier onset of systemic symptoms, and accumulates to a higher level in seven host species from three families than either of the parents. Our results indicate that CMV and the TAV 2b protein interact synergistically despite the fact that no synergism occurs in double infections with the two parental viruses. To our knowledge, this is the first example of an interspecific hybrid made from plant or animal RNA viruses that is more efficient in systemic infection of a number of hosts than the naturally occurring parents. As CMV and the hybrid virus accumulated to a similar level in the infected tobacco protoplasts, the observed synergistic responses most likely resulted from an increased efficacy of the hybrid virus in systemic spread in host plants provided by the TAV 2b protein. The relevance of our finding to the application of pathogen-derived resistance is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a method that can be used to produce equimolar amounts of two or more specific proteins in a cell. In this approach, termed the ubiquitin/protein/reference (UPR) technique, a reference protein and a protein of interest are synthesized as a polyprotein separated by a ubiquitin moiety. This tripartite fusion is cleaved, cotranslationally or nearly so, by ubiquitin-specific processing proteases after the last residue of ubiquitin, producing equimolar amounts of the protein of interest and the reference protein bearing a C-terminal ubiquitin moiety. In applications such as pulse-chase analysis, the UPR technique can compensate for the scatter of immunoprecipitation yields, sample volumes, and other sources of sample-to-sample variation. In particular, this method allows a direct comparison of proteins' metabolic stabilities from the pulse data alone. We used UPR to examine the N-end rule (a relation between the in vivo half-life of a protein and the identity of its N-terminal residue) in L cells, a mouse cell line. The increased accuracy afforded by the UPR technique underscores insufficiency of the current "half-life" terminology, because in vivo degradation of many proteins deviates from first-order kinetics. We consider this problem and discuss other applications of UPR.