3 resultados para Triglyceride levels

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the effect of chronic leptin treatment on fasting-induced torpor in leptin-deficient A-ZIP/F-1 and ob/ob mice. A-ZIP/F-1 mice have virtually no white adipose tissue and low leptin levels, whereas ob/ob mice have an abundance of fat but no leptin. These two models allowed us to examine the roles of adipose tissue and leptin in the regulation of entry into torpor. Torpor is a short-term hibernation-like state that allows conservation of metabolic fuels. We first characterized the A-ZIP/F-1 animals, which have a 10-fold reduction in total body triglyceride stores. Upon fasting, A-ZIP/F-1 mice develop a lower metabolic rate and decreased plasma glucose, insulin, and triglyceride levels, with no increase in free fatty acids or β-hydroxybutyrate. Unlike control mice, by 24 hr of fasting, they have nearly exhausted their triglycerides and are catabolizing protein. To conserve energy supplies during fasting, A-ZIP/F-1 (but not control) mice entered deep torpor, with a minimum core body temperature of 24°C, 2°C above ambient. In ob/ob mice, fasting-induced torpor was completely reversed by leptin treatment. In contrast, neither leptin nor thyroid hormone prevented torpor in A-ZIP/F-1 mice. These data suggest that there are at least two signals for entry into torpor in mice, a low leptin level and another signal that is independent of leptin and thyroid hormone levels. Studying rodent torpor provides insight into human torpor-like states such as near drowning in cold water and induced hypothermia for surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoprotein lipase (LPL) is the central enzyme in plasma triglyceride hydrolysis. In vitro studies have shown that LPL also can enhance lipoprotein uptake into cells via pathways that are independent of catalytic activity but require LPL as a molecular bridge between lipoproteins and proteoglycans or receptors. To investigate whether this bridging function occurs in vivo, two transgenic mouse lines were established expressing a muscle creatine kinase promoter-driven human LPL (hLPL) minigene mutated in the catalytic triad (Asp156 to Asn). Mutated hLPL was expressed only in muscle and led to 3,100 and 3,500 ng/ml homodimeric hLPL protein in post-heparin plasma but no hLPL catalytic activity. Less than 5 ng/ml hLPL was found in preheparin plasma, indicating that proteoglycan binding of mutated LPL was not impaired. Expression of inactive LPL did not rescue LPL knock-out mice from neonatal death. On the wild-type (LPL2) background, inactive LPL decreased very low density lipoprotein (VLDL)-triglycerides. On the heterozygote LPL knock-out background (LPL1) background, plasma triglyceride levels were lowered 22 and 33% in the two transgenic lines. After injection of radiolabeled VLDL, increased muscle uptake was observed for triglyceride-derived fatty acids (LPL2, 1.7×; LPL1, 1.8×), core cholesteryl ether (LPL2, 2.3×; LPL1, 2.7×), and apolipoprotein (LPL1, 1.8×; significantly less than cholesteryl ether). Skeletal muscle from transgenic lines had a mitochondriopathy with glycogen accumulation similar to mice expressing active hLPL in muscle. In conclusion, it appears that inactive LPL can act in vivo to mediate VLDL removal from plasma and uptake into tissues in which it is expressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis.