11 resultados para Trigeminal neuralgia

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varicella–zoster virus (VZV) is a human herpesvirus that causes varicella (chicken pox) as a primary infection and, after a variable period of latency in trigeminal and dorsal root ganglia, reactivates to cause herpes zoster (shingles). Both of these conditions may be followed by a variety of neurological complications, especially in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. There have been a number of conflicting reports regarding the cellular location of latent VZV within human ganglia. To address this controversy we examined fixed wax-embedded trigeminal ganglia from 30 individuals obtained at autopsy, including 11 with HIV infection, 2 neonates, and 17 immunocompetent individuals, for the presence of latent VZV. Polymerase chain reaction (PCR), in situ hybridization, and PCR in situ amplification techniques with oligonucleotide probes and primer sequences to VZV genes 18, 21, 29, and 63 were used. VZV DNA in ganglia was detected in 15 individuals by using PCR alone, and in 12 individuals (6 normal non-HIV and 6 positive HIV individuals, but not neonatal ganglia) by using PCR in situ amplification. When in situ hybridization alone was used, 5 HIV-positive individuals and only 1 non-HIV individual showed VZV nucleic acid signals in ganglia. In all of the VZV-positive ganglia examined, VZV nucleic acid was detected in neuronal nuclei. Only occasional nonneuronal cells contained VZV DNA. We conclude from these studies that the neuron is the predominant site of latent VZV in human trigeminal ganglia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brn-3 subfamily of POU domain genes are expressed in sensory neurons and in select brainstem nuclei. Earlier work has shown that targeted deletion of the Brn-3b and Brn-3c genes produce, respectively, defects in the retina and in the inner ear. We show herein that targeted deletion of the Brn-3a gene results in defective suckling and in uncoordinated limb and trunk movements, leading to early postnatal death. Brn-3a (-/-) mice show a loss of neurons in the trigeminal ganglia, the medial habenula, the red nucleus, and the caudal region of the inferior olivary nucleus but not in the retina and dorsal root ganglia. In the trigeminal and dorsal root ganglia, but not in the retina, there is a marked decrease in the frequency of neurons expressing Brn-3b and Brn-3c, suggesting that Brn-3a positively regulates Brn-3b and Brn-3c expression in somatosensory neurons. Thus, Brn-3a exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. The pheno-types of Brn-3a, Brn-3b, and Brn-3c mutant mice indicate that individual Brn-3 genes have evolved to control development in the auditory, visual, or somatosensory systems and that despite differences between these systems in transduction mechanisms, sensory organ structures, and central information processing, there may be fundamental homologies in the genetic regulatory events that control their development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies (≈10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic “relay” neurons function as phase “comparators” that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using in situ hybridization and immunohistochemistry the expression of, respectively, prepro-galanin (prepro-GAL) mRNA and GAL receptor-1 mRNA, as well as GAL-like and GAL message-associated peptide-like immunoreactivities, were studied in rats from embryonic day 14 (E14) to postnatal day 1. GAL expression was observed already at E14 in trigeminal and dorsal root ganglion neurons and at E15 in the sensory epithelia in developing ear, eye, and nose, as well as at E19 during bone formation. Also, GAL receptor-1 mRNA was expressed in the sensory ganglia of embryos but appeared later than the ligand. These findings suggest that GAL and/or GAL message-associated peptide may have a developmental role in several sensory systems and during bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMRglc) induced by functional activation is generally carried out in animals under anesthesia, usually α-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions. Results of studies on the role of nitric oxide (NO) in the mechanism of functional activation of lCBF have differed in unanesthetized and anesthetized animals. NO synthase inhibition markedly attenuates or eliminates the lCBF responses in anesthetized animals but not in unanesthetized animals. The present study examines in conscious rats and rats anesthetized with α-chloralose the effects of vibrissal stimulation on lCMRglc and lCBF in the whisker-to-barrel cortex pathway and on the effects of NO synthase inhibition with NG-nitro-l-arginine methyl ester (l-NAME) on the magnitude of the responses. Anesthesia markedly reduced the lCBF and lCMRglc responses in the ventral posteromedial thalamic nucleus and barrel cortex but not in the spinal and principal trigeminal nuclei. l-NAME did not alter the lCBF responses in any of the structures of the pathway in the unanesthetized rats and also not in the trigeminal nuclei of the anesthetized rats. In the thalamus and sensory cortex of the anesthetized rats, where the lCBF responses to stimulation had already been drastically diminished by the anesthesia, l-NAME treatment resulted in loss of statistically significant activation of lCBF by vibrissal stimulation. These results indicate that NO does not mediate functional activation of lCBF under physiological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuregulins are ligands for the erbB family of receptor tyrosine kinases and mediate growth and differentiation of neural crest, muscle, breast cancer, and Schwann cells. Neuregulins contain an epidermal growth factor-like domain located C-terminally to either an Ig-like domain or a cysteine-rich domain specific to the sensory and motor neuron-derived isoform. Here it is shown that elimination of the Ig-like domain-containing neuregulins by homologous recombination results in embryonic lethality associated with a deficiency of ventricular myocardial trabeculation and impairment of cranial ganglion development. The erbB receptors are expressed in myocardial cells and presumably mediate the neuregulin signal originating from endocardial cells. The trigeminal ganglion is reduced in size and lacks projections toward the brain stem and mandible. We conclude that IgL-domain-containing neuregulins play a major role in cardiac and neuronal development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ganglionic cell type in which varicella-zoster virus (VZV) is latent in humans was analyzed by using antibodies raised against in vitro-expressed VZV open reading frame 63 protein. VZV open reading frame 63 protein was detected exclusively in the cytoplasm of neurons of latently infected human trigeminal and thoracic ganglia. This is, to our knowledge, the first identification of a herpesvirus protein expressed during latency in the human nervous system.