7 resultados para Trichoderma viride
em National Center for Biotechnology Information - NCBI
Resumo:
To investigate the involvement of protein kinases in the signaling cascade that leads to hypersensitive cell death, we used a previously established system in which a fungal elicitor, xylanase from Trichoderma viride (TvX), induces a hypersensitive reaction in tobacco (Nicotiana tabacum) cells in culture (line XD6S). The elicitor induced the slow and prolonged activation of a p47 protein kinase, which has the characteristics of a family member of the mitogen-activated protein kinases. An inhibitor of protein kinases, staurosporine, and a blocker of Ca channels, Gd3+ ions, both of which blocked the TvX-induced hypersensitive cell death, inhibited the TvX-induced activation of p47 protein kinase. Moreover, an inhibitor of serine/threonine protein phosphatase alone induced both rapid cell death and the persistent activation of the p47 protein kinase. Thus, the p47 protein kinase might be a component of the signal transduction pathway that leads to hypersensitive cell death, and the regulation of the duration of activation of the p47 protein kinase might be important in determining the destiny of tobacco cells.
Resumo:
The fungus Trichoderma harzianum is a potent mycoparasite of various plant pathogenic fungi. We have studied the molecular regulation of mycoparasitism in the host/mycoparasite system Botrytis cinerea/T. harzianum. Protein extracts, prepared from various stages of mycoparasitism, were used in electrophoretic mobility-shift assays (EMSAs) with two promoter fragments of the ech-42 (42-kDa endochitinase-encoding) gene of T. harzianum. This gene was chosen as a model because its expression is triggered during mycoparasitic interaction [Carsolio, C., Gutierrez, A., Jimenez, B., van Montagu, M. & Herrera-Estrella, A. (1994) Proc. Natl. Acad. Sci. USA 91, 10903–10907]. All cell-free extracts formed high-molecular weight protein–DNA complexes, but those obtained from mycelia activated for mycoparasitic attack formed a complex with greater mobility. Competition experiments, using oligonucleotides containing functional and nonfunctional consensus sites for binding of the carbon catabolite repressor Cre1, provided evidence that the complex from nonmycoparasitic mycelia involves the binding of Cre1 to both fragments of the ech-42 promoter. The presence of two and three consensus sites for binding of Cre1 in the two ech-42 promoter fragments used is consistent with these findings. In contrast, the formation of the protein–DNA complex from mycoparasitic mycelia is unaffected by the addition of the competing oligonucleotides and hence does not involve Cre1. Addition of equal amounts of protein of cell-free extracts from nonmycoparasitic mycelia converted the mycoparasitic DNA–protein complex into the nonmycoparasitic complex. The addition of the purified Cre1::glutathione S-transferase protein to mycoparasitic cell-free extracts produced the same effect. These findings suggest that ech-42 expression in T. harzianum is regulated by (i) binding of Cre1 to two single sites in the ech-42 promoter, (ii) binding of a “mycoparasitic” protein–protein complex to the ech-42 promoter in vicinity of the Cre1 binding sites, and (iii) functional inactivation of Cre1 upon mycoparasitic interaction to enable the formation of the mycoparasitic protein–DNA complex.
Resumo:
Cellulose-binding domains (CBDs) bind specifically to cellulose, and form distinct domains of most cellulose degrading enzymes. The CBD-mediated binding of the enzyme has a fundamental role in the hydrolysis of the solid cellulose substrate. In this work we have investigated the reversibility and kinetics of the binding of the CBD from Trichoderma reesei cellobiohydrolase I on microcrystalline cellulose. The CBD was produced in Escherichia coli, purified, and radioactively labeled by reductive alkylation with 3H. Sensitive detection of the labeled CBD allowed more detailed analysis of its behavior than has been possible before, and important novel features were resolved. Binding of the CBD was found to be temperature sensitive, with an increased affinity at lower temperatures. The interaction of the CBD with cellulose was shown to be fully reversible and the CBD could be eluted from cellulose by simple dilution. The rate of exchange measured for the CBD-cellulose interaction compares well with the hydrolysis rate of cellobiohydrolase I, which is consistent with its proposed mode of action as a processive exoglucanase.
Resumo:
The relationship of the important cellulase producing asexual fungus Trichoderma reesei to its putative teleomorphic (sexual) ancestor Hypocrea jecorina and other species of the Trichoderma sect. Longibrachiatum was studied by PCR-fingerprinting and sequence analyses of the nuclear ribosomal DNA region containing the internal transcribed spacers (ITS-1 and ITS-2) and the 5.8S rRNA gene. The differences in the corresponding ITS sequences allowed a grouping of anamorphic (asexual) species of Trichoderma sect. Longibrachiatum into Trichoderma longibrachiatum, Trichoderma pseudokoningii, and Trichoderma reesei. The sexual species Hypocrea schweinitzii and H. jecorina were also clearly separated from each other. H. jecorina and T. reesei exhibited identical sequences, suggesting close relatedness or even species identity. Intraspecific and interspecific variation in the PCR-fingerprinting patterns supported the differentiation of species based on ITS sequences, the grouping of the strains, and the assignment of these strains to individual species. The variations between T. reesei and H. jecorina were at the same order of magnitude as found between all strains of H. jecorina, but much lower than the observed interspecific variations. Identical ITS sequences and the high similarity of PCR-fingerprinting patterns indicate a very close relationship between T. reesei and H. jecorina, whereas differences of the ITS sequences and the PCR-fingerprinting patterns show a clear phylogenetic distance between T. reesei/H. jecorina and T. longibrachiatum. T. reesei is considered to be an asexual, clonal line derived from a population of the tropical ascomycete H. jecorina.
Resumo:
The cohesin-dockerin interaction in Clostridium thermocellum cellulosome mediates the tight binding of cellulolytic enzymes to the cellulosome-integrating protein CipA. Here, this interaction was used to study the effect of different cellulose-binding domains (CBDs) on the enzymatic activity of C. thermocellum endoglucanase CelD (1,4-β-d endoglucanase, EC3.2.1.4) toward various cellulosic substrates. The seventh cohesin domain of CipA was fused to CBDs originating from the Trichoderma reesei cellobiohydrolases I and II (CBDCBH1 and CBDCBH2) (1,4-β-d glucan-cellobiohydrolase, EC3.2.1.91), from the Cellulomonas fimi xylanase/exoglucanase Cex (CBDCex) (β-1,4-d glucanase, EC3.2.1.8), and from C. thermocellum CipA (CBDCipA). The CBD-cohesin hybrids interacted with the dockerin domain of CelD, leading to the formation of CelD-CBD complexes. Each of the CBDs increased the fraction of cellulose accessible to hydrolysis by CelD in the order CBDCBH1 < CBDCBH2 ≈ CBDCex < CBDCipA. In all cases, the extent of hydrolysis was limited by the disappearance of sites accessible to CelD. Addition of a batch of fresh cellulose after completion of the reaction resulted in a new burst of activity, proving the reversible binding of the intact complexes despite the apparent binding irreversibility of some CBDs. Furthermore, burst of activity also was observed upon adding new batches of CelD–CBD complexes that contained a CBD differing from the first one. This complementation between different CBDs suggests that the sites made available for hydrolysis by each of the CBDs are at least partially nonoverlapping. The only exception was CBDCipA, whose sites appeared to overlap all of the other sites.
Resumo:
A gene, qid74, of mycoparasitic filamentous fungus Trichoderma harzianum and its allies encodes a cell wall protein that is induced by replacing glucose in the culture medium with chitin (simulated mycoparasitism conditions). Because no trace of this gene can be detected in related species such as Gibberella fujikuroi and Saccharomyces cerevisiae, the qid74 gene appears to have arisen de novo within the genus Trichoderma. Qid74 protein, 687 residues long, is now seen as highly conserved tandem repeats of the 59-residue-long unit. This unit itself, however, may have arisen as tandem repeats of the shorter 13-residue-long basic unit. Within the genus Trichoderma, the amino acid sequence of Qid74 proteins has been conserved in toto. The most striking is the fact that Qid74 shares 25.3% sequence identity with the carboxyl-terminal half of the 1,572-residue-long BR3 protein of the dipteran insect Chironomus tentans. BR3 protein is secreted by the salivary gland of each aquatic larva of Chironomus to form a tube to house itself. Furthermore, the consensus sequence derived from these 59-residue-long repeating units resembles those of epidermal growth factor-like domains found in divergent invertebrate and vertebrate proteins as to the positions of critical cysteine residues and homology of residues surrounding these cysteines.
Resumo:
Two novel type I ribosome-inactivating proteins (RIPs) were found in the storage roots of Mirabilis expansa, an underutilized Andean root crop. The two RIPs, named ME1 and ME2, were purified to homogeneity by ammonium sulfate precipitation, cation-exchange perfusion chromatography, and C4 reverse-phase chromatography. The two proteins were found to be similar in size (27 and 27.5 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their isoelectric points were determined to be greater than pH 10.0. Amino acid N-terminal sequencing revealed that both ME1 and ME2 had conserved residues characteristic of RIPs. Amino acid composition and western-blot analysis further suggested a structural similarity between ME1 and ME2. ME2 showed high similarity to the Mirabilis jalapa antiviral protein, a type I RIP. Depurination of yeast 26S rRNA by ME1 and ME2 demonstrated their ribosome-inactivating activity. Because these two proteins were isolated from roots, their antimicrobial activity was tested against root-rot microorganisms, among others. ME1 and ME2 were active against several fungi, including Pythium irregulare, Fusarium oxysporum solani, Alternaria solani, Trichoderma reesei, and Trichoderma harzianum, and an additive antifungal effect of ME1 and ME2 was observed. Antibacterial activity of both ME1 and ME2 was observed against Pseudomonas syringae, Agrobacterium tumefaciens, Agrobacterium radiobacter, and others.