4 resultados para Transnational advocacy networks, Biodiversity and CyberPolitics
em National Center for Biotechnology Information - NCBI
Resumo:
Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable carbon isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks and therefore an increasing flux of carbon from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO2 concentration dependence of photosynthetic carbon isotope fractionation then indicates that the diversification of land plants led to decreasing CO2 levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that global biodiversity grows with global biomass, the conservation of carbon shows that the long-term fluctuations of CO2 levels were dominated by complementary changes in the biological and fluid reservoirs of carbon, while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO2 levels.
Resumo:
Although panel discussants disagreed whether the biodiversity crisis constitutes a mass extinction event, all agreed that current extinction rates are 50–500 times background and are increasing and that the consequences for the future evolution of life are serious. In response to the on-going rapid decline of biomes and homogenization of biotas, the panelists predicted changes in species geographic ranges, genetic risks of extinction, genetic assimilation, natural selection, mutation rates, the shortening of food chains, the increase in nutrient-enriched niches permitting the ascendancy of microbes, and the differential survival of ecological generalists. Rates of evolutionary processes will change in different groups, and speciation in the larger vertebrates is essentially over. Action taken over the next few decades will determine how impoverished the biosphere will be in 1,000 years when many species will suffer reduced evolvability and require interventionist genetic and ecological management. Whether the biota will continue to provide the dependable ecological services humans take for granted is less clear. The discussants offered recommendations, including two of paramount importance (concerning human populations and education), seven identifying specific scientific activities to better equip us for stewardship of the processes of evolution, and one suggesting that such stewardship is now our responsibility. The ultimate test of evolutionary biology as a science is not whether it solves the riddles of the past but rather whether it enables us to manage the future of the biosphere. Our inability to make clearer predictions about the future of evolution has serious consequences for both biodiversity and humanity.
Resumo:
Tropical wildlands and their biodiversity will survive in perpetuity only through their integration into human society. One protocol for integration is to explicitly recognize conserved tropical wildlands as wildland gardens. A major way to facilitate the generation of goods and services by a wildland garden is to generate a public-domain Yellow Pages for its organisms. Such a Yellow Pages is part and parcel of high-quality search-and-delivery from wildland gardens. And, as they and their organisms become better understood, they become higher quality biodiversity storage devices than are large freezers. One obstacle to wildland garden survival is that specific goods and services, such as biodiversity prospecting, lack development protocols that automatically shunt the profits back to the source. Other obstacles are that environmental services contracts have the unappealing trait of asking for the payment of environmental credit card bills and implying delegation of centralized governmental authority to decentralized social structures. Many of the potential conflicts associated with wildland gardens may be reduced by recognizing two sets of social rules for perpetuating biodiversity and ecosystems, one set for the wildland garden and one set for the agroscape. In the former, maintaining wildland biodiversity and ecosystem survival in perpetuity through minimally damaging use is paramount, while in the agroscape, wild biodiversity and ecosystems are tools for a healthy and productive agroecosystem, and the loss of much of the original is acceptable.
Resumo:
Although the comparative ecology of primates has been relatively well studied and there have been a number of outstanding studies of individual primate communities, the factors determining primate species diversity on either a local or regional level are largely unexplored. Understanding the determinants of species abundance is an important aspect of biodiversity and is critical for interpreting the comparative ecology of these different communities and for designing effective strategies of conservation. Comparative analysis of species diversity in more than 70 primate communities from South America, Africa, Madagascar, and Asia shows that on major continental areas and large tropical islands, there is a high positive correlation between the number of primate species and the area of tropical forest. Within major continental areas, the species diversity at individual sites is highly correlated with mean annual rainfall for South America, Africa, and Madagascar, but not Asia.