4 resultados para Transition period

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reef communities are in a state of change throughout their geographical range. Factors contributing to this change include bleaching (the loss of algal symbionts), storm damage, disease, and increasing abundance of macroalgae. An additional factor for Caribbean reefs is the aftereffects of the epizootic that reduced the abundance of the herbivorous sea urchin, Diadema antillarum. Although coral reef communities have undergone phase shifts, there are few studies that document the details of such transitions. We report the results of a 40-month study that documents changes in a Caribbean reef community affected by bleaching, hurricane damage, and an increasing abundance of macroalgae. The study site was in a relatively pristine area of the reef surrounding the island of San Salvador in the Bahamas. Ten transects were sampled every 3–9 months from November 1994 to February 1998. During this period, the corals experienced a massive bleaching event resulting in a significant decline in coral abundance. Algae, especially macroalgae, increased in abundance until they effectively dominated the substrate. The direct impact of Hurricane Lili in October 1996 did not alter the developing community structure and may have facilitated increasing algal abundance. The results of this study document the rapid transition of this reef community from one in which corals and algae were codominant to a community dominated by macroalgae. The relatively brief time period required for this transition illustrates the dynamic nature of reef communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a better understanding of Al inhibition of root elongation, knowledge of the morphological and functional organization of the root apex is a prerequisite. We developed a polyvinyl chloride-block technique to supply Al (90 μm monomeric Al) in a medium containing agarose to individual 1-mm root zones of intact seedlings of maize (Zea mays L. cv Lixis). Root elongation was measured during a period of 5 h. After Al treatment, callose (5 h) and Al (1 h) contents of individual 1-mm apical root segments were determined. For comparison, callose and Al levels were also measured in root segments after uniform Al supply in agarose blocks to the 10-mm root apex. Only applying Al to the three apical 1-mm root zones inhibited root elongation after 1 h. The order of sensitivity was 1 to 2 > 0 to 1 > 2 to 3 mm. In the 1- to 2-mm root zone high levels of Al-induced callose formation and accumulation of Al was found, independently of whether Al was applied to individual apical root zones or uniformly to the whole-root apex. We conclude from these results that the distal part of the transition zone of the root apex, where the cells are undergoing a preparatory phase for rapid elongation (F. Baluška, D. Volkmann, P.W. Barlow [1996] Plant Physiol 112: 3–4), is the primary target of Al in this Al-sensitive maize cultivar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed cyclin E1, a protein that is essential for the G1/S transition, during early development in Xenopus embryos. Cyclin E1 was found to be abundant in eggs, and after fertilization, until the midblastula transition (MBT) when levels of cyclin E1 protein, and associated kinase activity, were found to decline precipitously. Our results suggest that the reduced level of the cyclin E1 protein detected after the MBT does not occur indirectly as a result of degradation of the maternally encoded cyclin E1 mRNA. Instead, the stability of cyclin E1 protein appears to play a major role in reduction of cyclin E1 levels at this time. Cyclin E1 protein was found to be stable during the cleavage divisions but degraded with a much shorter half-life after the MBT. Activation of cyclin E1 protein turnover occurs independent of cell cycle progression, does not require ongoing protein synthesis, and is not triggered as a result of the ratio of nuclei to cytoplasm in embryonic cells that initiates the MBT. We therefore propose that a developmental timing mechanism measures an approximately 5-hr time period, from the time of fertilization, and then allows activation of a protein degradative pathway that regulates cyclin E1. Characterization of the timer suggests that it might be held inactive in eggs by a mitogen-activated protein kinase signal transduction pathway.