35 resultados para Traffic signal control

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin–Benson–Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus, the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipid rafts are microdomains present within membranes of most cell types. These membrane microdomains, which are enriched in cholesterol and glycosphingolipids, have been implicated in the regulation of certain signal transduction and membrane traffic pathways. To investigate the possibility that lipid rafts organize exocytotic pathways in neuroendocrine cells, we examined the association of proteins of the exocytotic machinery with rafts purified from PC12 cells. The target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (tSNARE) proteins syntaxin 1A and synaptosomal-associated protein of 25 kDa (SNAP-25) were both found to be highly enriched in lipid rafts (≈25-fold). The vesicle SNARE vesicle-associated membrane protein (VAMP)2 was also present in raft fractions, but the extent of this recovery was variable. However, further analysis revealed that the majority of VAMP2 was associated with a distinct class of raft with different detergent solubility characteristics to the rafts containing syntaxin 1A and SNAP-25. Interestingly, no other studied secretory proteins were significantly associated with lipid rafts, including SNARE effector proteins such as nSec1. Chemical crosslinking experiments showed that syntaxin1A/SNAP-25 heterodimers were equally present in raft and nonraft fractions, whereas syntaxin1A/nSec1 complexes were detected only in nonraft fractions. SDS-resistance assays revealed that raft-associated syntaxin1A/SNAP-25 heterodimers were able to interact with VAMP2. Finally, reduction of cellular cholesterol levels decreased the extent of regulated exocytosis of dopamine from PC12 cells. The results described suggest that the interaction of SNARE proteins with lipid rafts is important for exocytosis and may allow structural and spatial organization of the secretory machinery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutral residue replacements were made of 21 acidic and basic residues within the N-terminal half of the Halobacterium salinarium signal transducer HtrI [the halobacterial transducer for sensory rhodopsin I (SRI)] by site-specific mutagenesis. The replacements are all within the region of HtrI that we previously concluded from deletion analysis to contain sites of interaction with the phototaxis receptor SRI. Immunoblotting shows plasmid expression of the htrI-sopI operon containing the mutations produces SRI and mutant HtrI in cells at near wild-type levels. Six of the HtrI mutations perturb photochemical kinetics of SRI and one reverses the phototaxis response. Substitution with neutral amino acids of Asp-86, Glu-87, and Glu-108 accelerate, and of Arg-70, Arg-84, and Arg-99 retard, the SRI photocycle. Opposite effects on photocycle rate cancel in double mutants containing one replaced acidic and one replaced basic residue. Laser flash spectroscopy shows the kinetic perturbations are due to alteration of the rate of reprotonation of the retinylidene Schiff base. All of these mutations permit normal attractant and repellent signaling. On the other hand, the substitution of Glu-56 with the isosteric glutamine converts the normally attractant effect of orange light to a repellent signal in vivo at neutral pH (inverted signaling). Low pH corrects the inversion due to Glu-56 -> Gln and the apparent pK of the inversion is increased when arginine is substituted at position 56. The results indicate that the cytoplasmic end of transmembrane helix-2 and the initial part of the cytoplasmic domain contain interaction sites with SRI. To explain these and previous results, we propose a model in which (i) the HtrI region identified here forms part of an electrostatic bonding network that extends through the SRI protein and includes its photoactive site; (ii) alteration of this network by photoisomerization-induced Schiff base deprotonation and reprotonation shifts HtrI between attractant and repellent conformations; and (iii) HtrI mutations and extracellular pH alter the equilibrium ratios of these conformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proton–sucrose symporter mediates the key transport step in the resource distribution system that allows many plants to function as multicellular organisms. In the results reported here, we identify sucrose as a signaling molecule in a previously undescribed signal-transduction pathway that regulates the symporter. Sucrose symporter activity declined in plasma membrane vesicles isolated from leaves fed exogenous sucrose via the xylem transpiration stream. Symporter activity dropped to 35–50% of water controls when the leaves were fed 100 mM sucrose and to 20–25% of controls with 250 mM sucrose. In contrast, alanine symporter and glucose transporter activities did not change in response to sucrose treatments. Decreased sucrose symporter activity was detectable after 8 h and reached a maximum by 24 h. Kinetic analysis of transport activity showed a decrease in Vmax. RNA gel blot analysis revealed a decrease in symporter message levels, suggesting a drop in transcriptional activity or a decrease in mRNA stability. Control experiments showed that these responses were not the result of changing osmotic conditions. Equal molar concentrations of hexoses did not elicit the response, and mannoheptulose, a hexokinase inhibitor, did not block the sucrose effect. These data are consistent with a sucrose-specific response pathway that is not mediated by hexokinase as the sugar sensor. Sucrose-dependent changes in the sucrose symporter were reversible, suggesting this sucrose-sensing pathway can modulate transport activity as a function of changing sucrose concentrations in the leaf. These results demonstrate the existence of a signaling pathway that can control assimilate partitioning at the level of phloem translocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical quorum-sensing (autoinduction) regulation, as exemplified by the lux system of Vibrio fischeri, requires N-acyl homoserine lactone (AHL) signals to stimulate cognate transcriptional activators for the cell density-dependent expression of specific target gene systems. For Pantoea stewartii subsp. stewartii, a bacterial pathogen of sweet corn and maize, the extracellular polysaccharide (EPS) stewartan is a major virulence factor, and its production is controlled by quorum sensing in a population density-dependent manner. Two genes, esaI and esaR, encode essential regulatory proteins for quorum sensing. EsaI is the AHL signal synthase, and EsaR is the cognate gene regulator. esaI, ΔesaR, and ΔesaI-esaR mutations were constructed to establish the regulatory role of EsaR. We report here that strains containing an esaR mutation produce high levels of EPS independently of cell density and in the absence of the AHL signal. Our data indicate that quorum-sensing regulation in P. s. subsp. stewartii, in contrast to most other described systems, uses EsaR to repress EPS synthesis at low cell density, and that derepression requires micromolar amounts of AHL. In addition, derepressed esaR strains, which synthesize EPS constitutively at low cell densities, were significantly less virulent than the wild-type parent. This finding suggests that quorum sensing in P. s. subsp. stewartii may be a mechanism to delay the expression of EPS during the early stages of infection so that it does not interfere with other mechanisms of pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the NF-κB/Rel and inhibitor of apoptosis (IAP) protein families have been implicated in signal transduction programs that prevent cell death elicited by the cytokine tumor necrosis factor α (TNF). Although NF-κB appears to stimulate the expression of specific protective genes, neither the identities of these genes nor the precise role of IAP proteins in this anti-apoptotic process are known. We demonstrate here that NF-κB is required for TNF-mediated induction of the gene encoding human c-IAP2. When overexpressed in mammalian cells, c-IAP2 activates NF-κB and suppresses TNF cytotoxicity. Both of these c-IAP2 activities are blocked in vivo by coexpressing a dominant form of IκB that is resistant to TNF-induced degradation. In contrast to wild-type c-IAP2, a mutant lacking the C-terminal RING domain inhibits NF-κB induction by TNF and enhances TNF killing. These findings suggest that c-IAP2 is critically involved in TNF signaling and exerts positive feedback control on NF-κB via an IκB targeting mechanism. Functional coupling of NF-κB and c-IAP2 during the TNF response may provide a signal amplification loop that promotes cell survival rather than death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z,13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by β-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles “oxylipin signatures.” Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the α-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemodynamic abnormalities have been implicated in the pathogenesis of the increased glomerular permeability to protein of diabetic and other glomerulopathies. Vascular permeability factor (VPF) is one of the most powerful promoters of vascular permeability. We studied the effect of stretch on VPF production by human mesangial cells and the intracellular signaling pathways involved. The application of mechanical stretch (elongation 10%) for 6 h induced a 2.4-fold increase over control in the VPF mRNA level (P < 0.05). There was a corresponding 3-fold increase in VPF protein level by 12 h (P < 0.001), returning to the baseline by 24 h. Stretch-induced VPF secretion was partially prevented both by the protein kinase C (PKC) inhibitor H7 (50 μM: 72% inhibition, P < 0.05) and by pretreatment with phorbol ester (phorbol-12-myristate-13 acetate 10−7 M: 77% inhibition, P < 0.05). A variety of protein tyrosine kinase (PTK) inhibitors, genistein (20 μg/ml), herbimycin A (3.4 μM), and a specific pp60src peptide inhibitor (21 μM) also significantly reduced, but did not entirely prevent, stretch-induced VPF protein secretion (respectively 63%, 80%, and 75% inhibition; P < 0.05 for all). The combination of both PKC and PTK inhibition completely abolished the VPF response to mechanical stretch (100% inhibition, P < 0.05). Stretch induces VPF gene expression and protein secretion in human mesangial cells via PKC- and PTK-dependent mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E2F transcription activity is composed of a family of heterodimers encoded by distinct genes. Through the overproduction of each of the five known E2F proteins in mammalian cells, we demonstrate that a large number of genes encoding proteins important for cell cycle regulation and DNA replication can be activated by the E2F proteins and that there are distinct specificities in the activation of these genes by individual E2F family members. Coexpression of each E2F protein with the DP1 heterodimeric partner does not significantly alter this specificity. We also find that only E2F1 overexpression induces cells to undergo apoptosis, despite the fact that at least two other E2F family members, E2F2 and E2F3, are equally capable of inducing S phase. The ability of E2F1 to induce apoptosis appears to result from the specific induction of an apoptosis-promoting activity rather than the lack of induction of a survival activity, because co-expression of E2F2 and E2F3 does not rescue cells from E2F1-mediated apoptosis. We conclude that E2F family members play distinct roles in cell cycle control and that E2F1 may function as a specific signal for the initiation of an apoptosis pathway that must normally be blocked for a productive proliferation event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CST20 gene of Candida albicans was cloned by functional complementation of a deletion of the STE20 gene in Saccharomyces cerevisiae. CST20 encodes a homolog of the Ste20p/p65PAK family of protein kinases. Colonies of C. albicans cells deleted for CST20 revealed defects in the lateral formation of mycelia on synthetic solid “Spider” media. However, hyphal development was not impaired in some other media. A similar phenotype was caused by deletion of HST7, encoding a functional homolog of the S. cerevisiae Ste7p protein kinase. Overexpression of HST7 partially complemented the deletion of CST20. Cells deleted for CST20 were less virulent in a mouse model for systemic candidiasis. Our results suggest that more than one signaling pathway can trigger hyphal development in C. albicans, one of which has a protein kinase cascade that is analogous to the mating response pathway in S. cerevisiae and might have become adapted to the control of mycelial formation in asexual C. albicans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal signaling requires that synaptic proteins be appropriately localized within the cell and regulated there. In mammalian neurons, polyribosomes are found not just in the cell body, but also in dendrites where they are concentrated within or beneath the dendritic spine. The α subunit of Ca2+-calmodulin-dependent protein kinase II (CaMKIIα) is one of only five mRNAs known to be present within the dendrites, as well as in the soma of neurons. This targeted subcellular localization of the mRNA for CaMKIIα provides a possible cell biological mechanism both for controlling the distribution of the cognate protein and for regulating independently the level of protein expression in individual dendritic spines. To characterize the cis-acting elements involved in the localization of dendritic mRNA we have produced two lines of transgenic mice in which the CaMKIIα promoter is used to drive the expression of a lacZ transcript, which either contains or lacks the 3′-untranslated region of the CaMKIIα gene. Although both lines of mice show expression in forebrain neurons that parallels the expression of the endogenous CaMKIIα gene, only the lacZ transcripts bearing the 3′-untranslated region are localized to dendrites. The β-galactosidase protein shows a variable level of expression along the dendritic shaft and within dendritic spines, which suggests that neurons can control the local biochemistry of the dendrite either through differential localization of the mRNA or variations in the translational efficiency at different sites along the dendrite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated mRNA 3′-end-processing signals in each of six eukaryotic species (yeast, rice, arabidopsis, fruitfly, mouse, and human) through the analysis of more than 20,000 3′-expressed sequence tags. The use and conservation of the canonical AAUAAA element vary widely among the six species and are especially weak in plants and yeast. Even in the animal species, the AAUAAA signal does not appear to be as universal as indicated by previous studies. The abundance of single-base variants of AAUAAA correlates with their measured processing efficiencies. As found previously, the plant polyadenylation signals are more similar to those of yeast than to those of animals, with both common content and arrangement of the signal elements. In all species examined, the complete polyadenylation signal appears to consist of an aggregate of multiple elements. In light of these and previous results, we present a broadened concept of 3′-end-processing signals in which no single exact sequence element is universally required for processing. Rather, the total efficiency is a function of all elements and, importantly, an inefficient word in one element can be compensated for by strong words in other elements. These complex patterns indicate that effective tools to identify 3′-end-processing signals will require more than consensus sequence identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in metabolism and local circulation occur in the spinal cord during peripheral noxious stimulation. Evidence is presented that this stimulation also causes signal intensity alterations in functional magnetic resonance images of the spinal cord during formalin-induced pain. These results indicate the potential of functional magnetic resonance imaging in assessing noninvasively the extent and intensity of spinal cord excitation in this well characterized pain model. Therefore, the aim of this study was to establish functional magnetic resonance imaging as a noninvasive method to characterize temporal changes in the spinal cord after a single injection of 50 μl of formalin subcutaneously into the hindpaw of the anesthetized rat. This challenge produced a biphasic licking activity in the freely moving conscious animal. Images of the spinal cord were acquired within 2 min, enabling monitoring of the site and the temporal evolution of the signal changes during the development of formalin-induced hyperalgesia without the need of any surgical procedure. The time course of changes in the spinal cord functional image in the isoflurane-anesthetized animal was similar to that obtained from behavioral experiments. Also, comparable physiological data, control experiments, and the inhibition of a response through application of the local anesthetic agent lidocaine indicate that the signal changes observed after formalin injection were specifically related to excitability changes in the relevant segments of the lumbar spinal cord. This approach could be useful to characterize different models of pain and hyperalgesia and, more importantly, to evaluate effects of analgesic drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery.