23 resultados para Tracts.
em National Center for Biotechnology Information - NCBI
Resumo:
Upstream A-tracts stimulate transcription from a variety of bacterial promoters, and this has been widely attributed to direct effects of the intrinsic curvature of A-tract-containing DNA. In this work we report experiments that suggest a different mechanism for the effects of upstream A-tracts on transcription. The similarity of A-tract-containing sequences to the adenine- and thymine-rich upstream recognition elements (UP elements) found in some bacterial promoters suggested that A-tracts might increase promoter activity by interacting with the α subunit of RNA polymerase (RNAP). We found that an A-tract-containing sequence placed upstream of the Escherichia coli lac or rrnB P1 promoters stimulated transcription both in vivo and in vitro, and that this stimulation required the C-terminal (DNA-binding) domain of the RNAP α subunit. The A-tract sequence was protected by wild-type RNAP but not by α-mutant RNAPs in footprints. The effect of the A-tracts on transcription was not as great as that of the most active UP elements, consistent with the degree of similarity of the A-tract sequence to the UP element consensus. A-tracts functioned best when positioned close to the −35 hexamer rather than one helical turn farther upstream, similar to the positioning optimal for UP element function. We conclude that A-tracts function as UP elements, stimulating transcription by providing binding site(s) for the RNAP αCTD, and we suggest that these interactions could contribute to the previously described wrapping of promoter DNA around RNAP.
Resumo:
Fine finger and hand movements in humans, monkeys, and rats are under the direct control of the corticospinal tract (CST). CST lesions lead to severe, long-term deficits of precision movements. We transected completely both CSTs in adult rats and treated the animals for 2 weeks with an antibody that neutralized the central nervous system neurite growth inhibitory protein Nogo-A (mAb IN-1). Anatomical studies of the rubrospinal tracts showed that the number of collaterals innervating the cervical spinal cord doubled in the mAb IN-1- but not in the control antibody-treated animals. Precision movements of the forelimb and fingers were severely impaired in the controls, but almost completely recovered in the mAb IN-1-treated rats. Low threshold microstimulation of the motor cortex induced a rapid forelimb electromyography response that was mediated by the red nucleus in the mAb IN-1 animals but not in the controls. These findings demonstrate an unexpectedly high capacity of the adult central nervous system motor system to sprout and reorganize in a targeted and functionally meaningful way.
Resumo:
Eukaryotic genomes contain tracts of DNA in which a single base or a small number of bases are repeated (microsatellites). Mutations in the yeast DNA mismatch repair genes MSH2, PMS1, and MLH1 increase the frequency of mutations for normal DNA sequences and destabilize microsatellites. Mutations of human homologs of MSH2, PMS1, and MLH1 also cause microsatellite instability and result in certain types of cancer. We find that a mutation in the yeast gene MSH3 that does not substantially affect the rate of spontaneous mutations at several loci increases microsatellite instability about 40-fold, preferentially causing deletions. We suggest that MSH3 has different substrate specificities than the other mismatch repair proteins and that the human MSH3 homolog (MRP1) may be mutated in some tumors with microsatellite instability.
Resumo:
Experimental lemurs either were infected orally with the agent of bovine spongiform encephalopathy (BSE) or were maintained as uninfected control animals. Immunohistochemical examination for proteinase-resistant protein (prion protein or PrP) was performed on tissues from two infected but still asymptomatic lemurs, killed 5 months after infection, and from three uninfected control lemurs. Control tissues showed no staining, whereas PrP was detected in the infected animals in tonsil, gastrointestinal tract and associated lymphatic tissues, and spleen. In addition, PrP was detected in ventral and dorsal roots of the cervical spinal cord, and within the spinal cord PrP could be traced in nerve tracts as far as the cerebral cortex. Similar patterns of PrP immunoreactivity were seen in two symptomatic and 18 apparently healthy lemurs in three different French primate centers, all of which had been fed diets supplemented with a beef protein product manufactured by a British company that has since ceased to include beef in its veterinary nutritional products. This study of BSE-infected lemurs early in their incubation period extends previous pathogenesis studies of the distribution of infectivity and PrP in natural and experimental scrapie. The similarity of neuropathology and PrP immunostaining patterns in experimentally infected animals to those observed in both symptomatic and asymptomatic animals in primate centers suggests that BSE contamination of zoo animals may have been more widespread than is generally appreciated.
Resumo:
A quantitative and selective genetic assay was developed to monitor expansions of trinucleotide repeats (TNRs) in yeast. A promoter containing 25 repeats allows expression of a URA3 reporter gene and yields sensitivity to the drug 5-fluoroorotic acid. Expansion of the TNR to 30 or more repeats turns off URA3 and provides drug resistance. When integrated at either of two chromosomal loci, expansion rates were 1 × 10−5 to 4 × 10−5 per generation if CTG repeats were replicated on the lagging daughter strand. PCR analysis indicated that 5–28 additional repeats were present in 95% of the expanded alleles. No significant changes in CTG expansion rates occurred in strains deficient in the mismatch repair gene MSH2 or the recombination gene RAD52. The frequent nature of CTG expansions suggests that the threshold number for this repeat is below 25 in this system. In contrast, expansions of the complementary repeat CAG occurred at 500- to 1,000-fold lower rates, similar to a randomized (C,A,G) control sequence. When the reporter plasmid was inverted within the chromosome, switching the leading and lagging strands of replication, frequent expansions were observed only when CTG repeats resided on the lagging daughter strand. Among the rare CAG expansions, the largest gain in tract size was 38 repeats. The control repeats CTA and TAG showed no detectable rate of expansions. The orientation-dependence and sequence-specificity data support the model that expansions of CTG and CAG tracts result from aberrant DNA replication via hairpin-containing Okazaki fragments.
Resumo:
Synpolydactyly (SPD) is a dominantly inherited congenital limb malformation. Typical cases have 3/4 finger and 4/5 toe syndactyly, with a duplicated digit in the syndactylous web, but incomplete penetrance and variable expressivity are common. The condition has recently been shown to be caused by expansions of an imperfect trinucleotide repeat sequence encoding a 15-residue polyalanine tract in HOXD13. We have studied 16 new and 4 previously published SPD families, with between 7 and 14 extra residues in the tract, to analyze the molecular basis for the observed variation in phenotype. Although there is no evidence of change in expansion size within families, even over six generations, there is a highly significant increase in the penetrance and severity of phenotype with increasing expansion size, affecting both hands (P = 0.012) and feet (P < 0.00005). Affected individuals from a family with a 14-alanine expansion, the largest so far reported, all have a strikingly similar and unusually severe limb phenotype, involving the first digits and distal carpals. Affected males from this family also have hypospadias, not previously described in SPD, but consistent with HOXD13 expression in the developing genital tubercle. The remarkable correlation between phenotype and expansion size suggests that expansion of the tract leads to a specific gain of function in the mutant HOXD13 protein, and has interesting implications for the role of polyalanine tracts in the control of transcription.
Resumo:
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive syndrome associated with chromosomal instability, hypersensitivity to DNA crosslinking agents, and predisposition to malignancy. The gene for FA complementation group A (FAA) recently has been cloned. The cDNA is predicted to encode a polypeptide of 1,455 amino acids, with no homologies to any known protein that might suggest a function for FAA. We have used single-strand conformational polymorphism analysis to screen genomic DNA from a panel of 97 racially and ethnically diverse FA patients from the International Fanconi Anemia Registry for mutations in the FAA gene. A total of 85 variant bands were detected. Forty-five of the variants are probably benign polymorphisms, of which nine are common and can be used for various applications, including mapping studies for other genes in this region of chromosome 16q. Amplification refractory mutation system assays were developed to simplify their detection. Forty variants are likely to be pathogenic mutations. Seventeen of these are microdeletions/microinsertions associated with short direct repeats or homonucleotide tracts, a type of mutation thought to be generated by a mechanism of slipped-strand mispairing during DNA replication. A screening of 350 FA probands from the International Fanconi Anemia Registry for two of these deletions (1115–1118del and 3788–3790del) revealed that they are carried on about 2% and 5% of the FA alleles, respectively. 3788–3790del appears in a variety of ethnic groups and is found on at least two different haplotypes. We suggest that FAA is hypermutable, and that slipped-strand mispairing, a mutational mechanism recognized as important for the generation of germ-line and somatic mutations in a variety of cancer-related genes, including p53, APC, RB1, WT1, and BRCA1, may be a major mechanism for FAA mutagenesis.
Resumo:
Cac1p is a subunit of yeast chromatin assembly factor I (yCAF-I) that is thought to assemble nucleosomes containing diacetylated histones onto newly replicated DNA [Kaufman, P. D., Kobayashi, R. & Stillman, B. (1997) Genes Dev. 11, 345–357]. Although cac1Δ cells could establish and maintain transcriptional repression at telomeres, they displayed a reduced heritability of the repressed state. Single-cell analysis revealed that individual cac1Δ cells switch from transcriptionally “off” to transcriptionally “on” more often per cell cycle than wild-type cells. In addition, cac1Δ cells were defective for transcriptional silencing near internal tracts of C1–3A sequence, but they showed no defect in silencing at the silent mating type loci when analyzed by a reverse transcription–PCR assay. Despite the loss of transcriptional silencing at telomeres and internal C1–3A tracts, subtelomeric DNA was organized into nucleosomes that had all of the features characteristic of silent chromatin, such as hypoacetylation of histone H4 and protection from methylation by the Escherichia coli dam methylase. Thus, these features of silent chromatin are not sufficient for stable maintenance of a silent chromatin state. We propose that the inheritance of the transcriptionally repressed state requires the specific pattern of histone acetylation conferred by yCAF-I-mediated nucleosome assembly.
Resumo:
Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopus sperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.
Resumo:
In the nuclear genome of Saccharomyces cerevisiae, simple, repetitive DNA sequences (microsatellites) mutate at rates much higher than nonrepetitive sequences. Most of these mutations are deletions or additions of repeat units. The yeast mitochondrial genome also contains many microsatellites. To examine the stability of these sequences, we constructed a reporter gene (arg8m) containing out-of-frame insertions of either poly(AT) or poly(GT) tracts within the coding sequence. Yeast strains with this reporter gene inserted within the mitochondrial genome were constructed. Using these strains, we showed that poly(GT) tracts were considerably less stable than poly(AT) tracts and that alterations usually involved deletions rather than additions of repeat units. In contrast, in the nuclear genome, poly(GT) and poly(AT) tracts had similar stabilities, and alterations usually involved additions rather than deletions. Poly(GT) tracts were more stable in the mitochondria of diploid cells than in haploids. In addition, an msh1 mutation destabilized poly(GT) tracts in the mitochondrial genome.
Resumo:
Targeted expression of foreign genes to the peripheral nervous system is interesting for many applications, including gene therapy of neuromuscular diseases, neuroanatomical studies, and elucidation of mechanisms of axonal flow. Here we describe a microneurosurgical technique for injection of replication-defective viral vectors into dorsal root ganglia (DRG). Adenovirus- and adeno-associated virus-based vectors with transcriptional competence for DRG neurons led to expression of the gene of interest throughout the first neuron of the sensory system, from the distal portions of the respective sensory nerve to the ipsilateral nucleus gracilis and cuneatus, which contains the synapses to the spinothalamic tracts. Use of Rag-1 ablated mice, which lack all B and T lymphocytes, allowed for sustained expression for periods exceeding 100 days. In immunocompetent mice, long-term (52 days) expression was achieved with similar efficiency by using adeno-associated viral vectors. DRG injection was vastly superior to intraneural injection into the sciatic nerve, which mainly transduced Schwann cells in the vicinity of the site of inoculation site but only inefficiently transduced nerve fibers, whereas i.m. injection did not lead to any significant expression of the reporter gene in nerve fibers. The versatile and efficient transduction of genes of interest should enable a wide variety of functional studies of peripheral nervous system pathophysiology.
Resumo:
Nuclear LIM domains interact with a family of coregulators referred to as Clim/Ldb/Nli. Although one family member, Clim-2/Ldb-1/Nli, is highly expressed in epidermal keratinocytes, no nuclear LIM domain factor is known to be expressed in epidermis. Therefore, we used the conserved LIM-interaction domain of Clim coregulators to screen for LIM domain factors in adult and embryonic mouse skin expression libraries and isolated a factor that is highly homologous to the previously described LIM-only proteins LMO-1, -2, and -3. This factor, referred to as LMO-4, is expressed in overlapping manner with Clim-2 in epidermis and in several other regions, including epithelial cells of the gastrointestinal, respiratory and genitourinary tracts, developing cartilage, pituitary gland, and discrete regions of the central and peripheral nervous system. Like LMO-2, LMO-4 interacts strongly with Clim factors via its LIM domain. Because LMO/Clim complexes are thought to regulate gene expression by associating with DNA-binding proteins, we used LMO-4 as a bait to screen for such DNA-binding proteins in epidermis and isolated the mouse homologue of Drosophila Deformed epidermal autoregulatory factor 1 (DEAF-1), a DNA-binding protein that interacts with regulatory sequences first described in the Deformed epidermal autoregulatory element. The interaction between LMO-4 and mouse DEAF-1 maps to a proline-rich C-terminal domain of mouse DEAF-1, distinct from the helix–loop–helix and GATA domains previously shown to interact with LMOs, thus defining an additional LIM-interacting domain.
Resumo:
The terbenzimidazoles are a class of synthetic ligands that poison the human topoisomerase I (TOP1) enzyme and promote cancer cell death. It has been proposed that drugs of this class act as TOP1 poisons by binding to the minor groove of the DNA substrate of TOP1 and altering its structure in a manner that results in enzyme-mediated DNA cleavage. To test this hypothesis, we characterize and compare the binding properties of a 5-phenylterbenzimidazole derivative (5PTB) to the d(GA4T4C)2 and d(GT4A4C)2 duplexes. The d(GA4T4C)2 duplex contains an uninterrupted 8-bp A⋅T domain, which, on the basis of x-ray crystallographic data, should induce a highly hydrated “A-tract” conformation. This duplex also exhibits anomalously slow migration in a polyacrylamide gel, a feature characteristic of a noncanonical global conformational state frequently described as “bent.” By contrast, the d(GT4A4C)2 duplex contains two 4-bp A⋅T tracts separated by a TpA dinucleotide step, which should induce a less hydrated “B-like” conformation. This duplex also migrates normally in a polyacrylamide gel, a feature further characteristic of a global, canonical B-form duplex. Our data reveal that, at 20°C, 5PTB exhibits an ≈2.3 kcal/mol greater affinity for the d(GA4T4C)2 duplex than for the d(GT4A4C)2 duplex. Significantly, we find this sequence/conformational binding specificity of 5PTB to be entropic in origin, an observation consistent with a greater degree of drug binding-induced dehydration of the more solvated d(GA4T4C)2 duplex. By contrast with the differential duplex affinity exhibited by 5PTB, netropsin and 4′,6-diamidino-2-phenylindole (DAPI), two AT-specific minor groove binding ligands that are inactive as human TOP1 poisons, bind to both duplexes with similar affinities. The electrophoretic behaviors of the ligand-free and ligand-bound duplexes are consistent with 5PTB-induced bending and/or unwinding of both duplexes, which, for the d(GA4T4C)2 duplex, is synergistic with the endogenous sequence-directed electrophoretic properties of the ligand-free duplex state. By contrast, the binding to either duplex of netropsin or DAPI induces little or no change in the electrophoretic mobilities of the duplexes. Our results demonstrate that the TOP1 poison 5PTB binds differentially to and alters the structures of the two duplexes, in contrast to netropsin and DAPI, which bind with similar affinities to the two duplexes and do not significantly alter their structures. These results are consistent with a mechanism for TOP1 poisoning in which drugs such as 5PTB differentially target conformationally distinct DNA sites and induce structural changes that promote enzyme-mediated DNA cleavage.
Resumo:
The energy of DNA deformation plays a crucial and active role in its packaging and its function in the cell. Considerable effort has gone into developing methodologies capable of evaluating the local sequence-directed curvature and flexibility of a DNA chain. These studies thus far have focused on DNA constructs expressly tailored either with anomalous flexibility or curvature tracts. Here we demonstrate that these two structural properties can be mapped also along the chain of a “natural” DNA with any sequence on the basis of its scanning force microscope (SFM) images. To know the orientation of the sequence of the investigated DNA molecules in their SFM images, we prepared a palindromic dimer of the long DNA molecule under study. The palindromic symmetry also acted as an internal gauge of the statistical significance of the analysis carried out on the SFM images of the dimer molecules. It was found that although the curvature modulus is not efficient in separating static and dynamic contributions to the curvature of the population of molecules, the curvature taken with its direction (its sign in two dimensions) permits the direct separation of the intrinsic curvature from the flexibility contributions. The sequence-dependent flexibility seems to vary monotonically with the chain's intrinsic curvature; the chain rigidity was found to modulate as its local thermodynamic stability and does not correlate with the dinucleotide chain rigidities evaluation made from x-ray data by other authors.
Resumo:
The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repeat tracts. The “type II” pathway generates telomeres with extremely long heterogeneous terminal repeat tracts, reminiscent of the long telomeres observed in telomerase-deficient human tumors and tumor-derived cell lines. Here, we report that telomerase-negative (est2) yeast cells lacking SGS1 senesced more rapidly, experienced a higher rate of telomere erosion, and were delayed in the generation of survivors. The est2 sgs1 survivors that were generated grew poorly, arrested in G2/M and possessed exclusively type I telomeres, implying that SGS1 is critical for the type II pathway. The mouse WS gene suppressed the slow growth and G2/M arrest phenotype of est2 sgs1 survivors, arguing that the telomeric function of SGS1 is conserved. Reintroduction of SGS1 into est2 sgs1 survivors restored growth rate and extended terminal tracts by ≈300 bp. Both phenotypes were absolutely dependent on Sgs1 helicase activity. Introduction of an sgs1 carboxyl-terminal truncation allele with helicase activity restored growth rate without extending telomeres in most cases, demonstrating that type II telomeres are not necessary for normal growth in the absence of telomerase.