10 resultados para Traction of Force

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise “quantized” manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experiments using electrical and N-methyl-d-aspartate microstimulation of the spinal cord gray matter and cutaneous stimulation of the hindlimb of spinalized frogs have provided evidence for a modular organization of the frog’s spinal cord circuitry. A “module” is a functional unit in the spinal cord circuitry that generates a specific motor output by imposing a specific pattern of muscle activation. The output of a module can be characterized as a force field: the collection of the isometric forces generated at the ankle over different locations in the leg’s workspace. Different modules can be combined independently so that their force fields linearly sum. The goal of this study was to ascertain whether the force fields generated by the activation of supraspinal structures could result from combinations of a small number of modules. We recorded a set of force fields generated by the electrical stimulation of the vestibular nerve in seven frogs, and we performed a principal component analysis to study the dimensionality of this set. We found that 94% of the total variation of the data is explained by the first five principal components, a result that indicates that the dimensionality of the set of fields evoked by vestibular stimulation is low. This result is compatible with the hypothesis that vestibular fields are generated by combinations of a small number of spinal modules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbohydrate–protein bonds interrupt the rapid flow of leukocytes in the circulation by initiation of rolling and tethering at vessel walls. The cell surface carbohydrate ligands are glycosylated proteins like the mucin P-selectin glycoprotein ligand-1 (PSGL-1), which bind ubiquitously to the family of E-, P-, and L-selectin proteins in membranes of leukocytes and endothelium. The current view is that carbohydrate–selectin bonds dissociate a few times per second, and the unbinding rate increases weakly with force. However, such studies have provided little insight into how numerous hydrogen bonds, a Ca2+ metal ion bond, and other interactions contribute to the mechanical strength of these attachments. Decorating a force probe with very dilute ligands and controlling touch to achieve rare single-bond events, we have varied the unbinding rates of carbohydrate–selectin bonds by detachment with ramps of force/time from 10 to 100,000 pN/sec. Testing PSGL-1, its outer 19 aa (19FT), and sialyl LewisX (sLeX) against L-selectin in vitro on glass microspheres and in situ on neutrophils, we found that the unbinding rates followed the same dependence on force and increased by nearly 1,000-fold as rupture forces rose from a few to ≈200 pN. Plotted on a logarithmic scale of loading rate, the rupture forces reveal two prominent energy barriers along the unbinding pathway. Strengths above 75 pN arise from rapid detachment (<0.01 sec) impeded by an inner barrier that requires a Ca2+ bond between a single sLeX and the lectin domain. Strengths below 75 pN occur under slow detachment (>0.01 sec) impeded by the outer barrier, which appears to involve an array of weak (putatively hydrogen) bonds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Muscle contraction is the result of myosin cross-bridges (XBs) cyclically interacting with the actin-containing thin filament. This interaction is modulated by the thin filament regulatory proteins, troponin and tropomyosin (Tm). With the use of an in vitro motility assay, the role of Tm in myosin’s ability to generate force and motion was assessed. At saturating myosin surface densities, Tm had no effect on thin filament velocity. However, below 50% myosin saturation, a significant reduction in actin–Tm filament velocity was observed, with complete inhibition of movement occurring at 12.5% of saturating surface densities. Under similar conditions, actin filaments alone demonstrated no reduction in velocity. The effect of Tm on force generation was assessed at the level of a single thin filament. In the absence of Tm, isometric force was a linear function of the density of myosin on the motility surface. At 50% myosin surface saturation, the presence of Tm resulted in a 2-fold enhancement of force relative to actin alone. However, no further potentiation of force was observed with Tm at saturating myosin surface densities. These results indicate that, in the presence of Tm, the strong binding of myosin cooperatively activates the thin filament. The inhibition of velocity at low myosin densities and the potentiation of force at higher myosin densities suggest that Tm can directly modulate the kinetics of a single myosin XB and the recruitment of a population of XBs, respectively. At saturating myosin conditions, Tm does not appear to affect the recruitment or the kinetics of myosin XBs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the β-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 2842–2848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and ΔGlu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pretreatment of intact rabbit portal vein smooth muscle with the chimeric toxin DC3B (10−6 M, 48 h; Aullo et al., 1993; Boquet et al. 1995) ADP-ribosylated endogenous RhoA, including cytosolic RhoA complexed with rhoGDI, and inhibited the tonic phase of phenylephrine-induced contraction and the Ca2+-sensitization of force by phenylephrine, endothelin and guanosine triphosphate (GTP)γS, but did not inhibit Ca2+-sensitization by phorbol dibutyrate. DC3B also inhibited GTPγS-induced translocation of cytosolic RhoA (Gong et al., 1997a) to the membrane fraction. In DC3B-treated muscles the small fraction of membrane-associated RhoA could be immunoprecipitated, even after exposure to GTPγS, which prevents immunoprecipitation of non-ADP–ribosylated RhoA. Dissociation of cytosolic RhoA–rhoGDI complexes with SDS restored the immunoprecipitability and ADP ribosylatability of RhoA, indicating that both the ADP-ribosylation site (Asn 41) and RhoA insert loop (Wei et al., 1997) are masked by rhoGDI and that the long axes of the two proteins are in parallel in the heterodimer. We conclude that RhoA plays a significant role in G-protein-, but not protein kinase C-mediated, Ca2+ sensitization and that ADP ribosylation inhibits in vivo the Ca2+-sensitizing effect of RhoA by interfering with its binding to a membrane-associated effector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural proteins of the cytoplasmic intermediate filaments (IFs) arise in the nematode Caenorhabditis elegans from eight reported genes and an additional three genes now identified in the complete genome. With the use of double-stranded RNA interference (RNAi) for all 11 C. elegans genes encoding cytoplasmic IF proteins, we observe phenotypes for the five genes A1, A2, A3, B1, and C2. These range from embryonic lethality (B1) and embryonic/larval lethality (A3) to larval lethality (A1 and A2) and a mild dumpy phenotype of adults (C2). Phenotypes A2 and A3 involve displaced body muscles and paralysis. They probably arise by reduction of hypodermal IFs that participate in the transmission of force from the muscle cells to the cuticle. The B1 phenotype has multiple morphogenetic defects, and the A1 phenotype is arrested at the L1 stage. Thus, at least four IF genes are essential for C. elegans development. Their RNAi phenotypes are lethal defects due to silencing of single IF genes. In contrast to C. elegans, no IF genes have been identified in the complete Drosophila genome, posing the question of how Drosophila can compensate for the lack of these proteins, which are essential in mammals and C. elegans. We speculate that the lack of IF proteins in Drosophila can be viewed as cytoskeletal alteration in which, for instance, stable microtubules, often arranged as bundles, substitute for cytoplasmic IFs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dyneins are a class of motor protein involved in ciliary and flagellar motility, organelle transport, and chromosome segregation. Because of their large size and subunit complexity, relatively little is known about their mechanisms of force production and regulation. We report here on the expression and analysis of the entire rat cytoplasmic dynein heavy chain (Mr 532,000). Full-length cDNAs were constructed from a series of partial clones and tagged at the C terminus with either a FLAG-epitope tag or a His6-tag. The recombinant polypeptides were expressed either in insect cells by baculovirus infection or in COS-7 cells by transient transfection. The recombinant protein was mostly soluble and showed good microtubule binding. It exhibited a broad sedimentation profile, indicative of the formation of dimers as well as higher order multimers. Good microtubule gliding motility activity was observed in assays of heavy chain expressed in either insect or COS-7 cells. Average microtubule gliding velocities of 1.2-1.8 microm/sec were observed, comparable with the rates determined for calf brain cytoplasmic dynein. These results represent the first indication that recombinant heavy chain alone is capable of force production, and should lead to rapid progress in defining the dynein motor domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.