2 resultados para Track and field.

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A colonial protochordate, Botryllus schlosseri, undergoes a natural transplantation reaction in the wild that results alternatively in colony fusion (chimera formation) or inflammatory rejection. A single, highly polymorphic histocompatibility locus (called Fu/HC) is responsible for rejection versus fusion. Gonads are seeded and gametogenesis can occur in colonies well after fusion, and involves circulating germ-line progenitors. Buss proposed that colonial organisms might develop self/non-self histocompatibility systems to limit the possibility of interindividual germ cell “parasitism” (GCP) to histocompatible kin [Buss, L. W. (1982) Proc. Natl. Acad. Sci. USA 79, 5337–5341 and Buss, L. W. (1987) The Evolution of Individuality (Princeton Univ. Press, Princeton]. Here we demonstrate in laboratory and field experiments that both somatic cell and (more importantly) germ-line parasitism are a common occurrence in fused chimeras. These experiments support the tenet in Buss’s hypothesis that germ cell and somatic cell parasitism can occur in fused chimeras and that a somatic appearance may mask the winner of a gametic war. They also provide an interesting challenge to develop formulas that describe the inheritance of competing germ lines rather than competing individuals. The fact that fused B. schlosseri have higher rates of GCP than unfused colonies additionally provides a rational explanation for the generation and maintenance of a high degree of Fu/HC polymorphism, largely limiting GCP to sibling offspring.