4 resultados para Tongues of fire
em National Center for Biotechnology Information - NCBI
Resumo:
Polypeptide growth factors activate common signal transduction pathways, yet they can induce transcription of different target genes. The mechanisms that control this specificity are not completely understood. Recently, we have described a fibroblast growth factor (FGF)-inducible response element, FiRE, on the syndecan-1 gene. In NIH 3T3 cells, the FiRE is activated by FGF-2 but not by several other growth factors, such as platelet-derived growth factor or epidermal growth factor, suggesting that FGF-2 activates signaling pathways that diverge from pathways activated by other growth factors. In this paper, we report that the activation of FiRE by FGF-2 requires protein kinase A (PKA) in NIH 3T3 cells. The PKA-specific inhibitor H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) blocked the FGF-2-induced activation of FiRE, the transcription of the syndecan-1 gene, and cell proliferation. Also, expression of a dominant-negative form of PKA inhibited the FGF-2-induced FiRE activation and the transcription of the syndecan-1 gene. The binding of activator protein-1 transcription-factor complexes, required for the activation of FiRE, was blocked by inhibition of PKA activity before FGF-2 treatment. In accordance with the growth factor specificity of FiRE, the activity of PKA was stimulated by FGF-2 but not by platelet-derived growth factor or epidermal growth factor. Furthermore, a portion of the PKA catalytic subunit pool was translocated to the nucleus by FGF-2. Noticeably, the total cellular cAMP concentration was not affected by FGF-2 stimulus. We propose that the FGF-2-selective transcriptional activation through FiRE is caused by the ability of FGF-2 to control PKA activity.
Resumo:
Exocytosis of transmitter at most synapses is a very fast process triggered by the entry of Ca2+ during an action potential. A reasonable expectation is that the fast step of exocytosis is followed by slow steps readying another vesicle for exocytosis but the identity and kinetics of these steps are presently unclear. By voltage clamping both pre- and postsynaptic neurons in an isolated pair of retinal amacrine cells, we have measured evoked synaptic currents and responses to single vesicles of transmitter (minis). From these currents, we have computed the rate of exocytosis during a sustained presynaptic depolarization. We show here that for these cells, release is consistent with a scheme of "fire and reload." Large Ca2+ influx causes the rapid release of a small number of vesicles, typically approximately 10 per presynaptic neuron, likely corresponding to those vesicles already docked. After this spike of exocytosis whose peak is 150 quanta per release site per s, continued Ca2+ influx sustains release at only 22 quanta per release site per s, probably rate-limited by the docking of fresh vesicles.
Resumo:
The inadvertent introduction of the fire ant Solenopsis invicta to the United States from South America provides the opportunity to study recent social evolution by comparing social organization in native and introduced populations. We report that several important elements of social organization in multiple-queen nests differ consistently and dramatically between ants in Argentina and the United States. Colonies in Argentina contain relatively few queens and they are close relatives, whereas colonies in the United States contain high numbers of unrelated queens. A corollary of these differences is that workers in the native populations are significantly related to the new queens that they rear in contrast to the zero relatedness between workers and new queens in the introduced populations. The observed differences in queen number and relatedness signal a shift in the breeding biology of the introduced ants that is predicted on the basis of the high population densities in the new range. An additional difference in social organization that we observed, greater proportions of permanently unmated queens in introduced than in native populations, is predicted from the loss of alleles at the sex-determining locus and consequent skewing of operational sex ratios in the colonizing ants. Thus, significant recent social evolution in fire ants is consistent with theoretical expectations based on the altered ecology and population genetics of the introduced populations.
Resumo:
The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape. Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons.