6 resultados para Tomita-Takesaki-Theory KMS-States Spectral Deformation Liouville Operator

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two variables define the topological state of closed double-stranded DNA: the knot type, K, and ΔLk, the linking number difference from relaxed DNA. The equilibrium distribution of probabilities of these states, P(ΔLk, K), is related to two conditional distributions: P(ΔLk|K), the distribution of ΔLk for a particular K, and P(K|ΔLk) and also to two simple distributions: P(ΔLk), the distribution of ΔLk irrespective of K, and P(K). We explored the relationships between these distributions. P(ΔLk, K), P(ΔLk), and P(K|ΔLk) were calculated from the simulated distributions of P(ΔLk|K) and of P(K). The calculated distributions agreed with previous experimental and theoretical results and greatly advanced on them. Our major focus was on P(K|ΔLk), the distribution of knot types for a particular value of ΔLk, which had not been evaluated previously. We found that unknotted circular DNA is not the most probable state beyond small values of ΔLk. Highly chiral knotted DNA has a lower free energy because it has less torsional deformation. Surprisingly, even at |ΔLk| > 12, only one or two knot types dominate the P(K|ΔLk) distribution despite the huge number of knots of comparable complexity. A large fraction of the knots found belong to the small family of torus knots. The relationship between supercoiling and knotting in vivo is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel type of spectral diffusion experiment in the millikelvin range to characterize the energy landscape of a protein as compared with that of a glass. We measure the time evolution of spectral holes for more than 300 hr after well-defined initial nonequilibrium conditions. We show that the model of noninteracting two-level systems can describe spectral diffusion in the glass, but fails for the protein. Our results further demonstrate that randomness in the energy landscape of a protein shows features of organization. There are “deep minimum” states separated by barriers, the heights of which we are able to estimate. The energy landscape of a glass is featureless by comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most large dynamical systems are thought to have ergodic dynamics, whereas small systems may not have free interchange of energy between degrees of freedom. This assumption is made in many areas of chemistry and physics, ranging from nuclei to reacting molecules and on to quantum dots. We examine the transition to facile vibrational energy flow in a large set of organic molecules as molecular size is increased. Both analytical and computational results based on local random matrix models describe the transition to unrestricted vibrational energy flow in these molecules. In particular, the models connect the number of states participating in intramolecular energy flow to simple molecular properties such as the molecular size and the distribution of vibrational frequencies. The transition itself is governed by a local anharmonic coupling strength and a local state density. The theoretical results for the transition characteristics compare well with those implied by experimental measurements using IR fluorescence spectroscopy of dilution factors reported by Stewart and McDonald [Stewart, G. M. & McDonald, J. D. (1983) J. Chem. Phys. 78, 3907–3915].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How a reacting system climbs through a transition state during the course of a reaction has been an intriguing subject for decades. Here we present and quantify a technique to identify and characterize local invariances about the transition state of an N-particle Hamiltonian system, using Lie canonical perturbation theory combined with microcanonical molecular dynamics simulation. We show that at least three distinct energy regimes of dynamical behavior occur in the region of the transition state, distinguished by the extent of their local dynamical invariance and regularity. Isomerization of a six-atom Lennard–Jones cluster illustrates this: up to energies high enough to make the system manifestly chaotic, approximate invariants of motion associated with a reaction coordinate in phase space imply a many-body dividing hypersurface in phase space that is free of recrossings even in a sea of chaos. The method makes it possible to visualize the stable and unstable invariant manifolds leading to and from the transition state, i.e., the reaction path in phase space, and how this regularity turns to chaos with increasing total energy of the system. This, in turn, illuminates a new type of phase space bottleneck in the region of a transition state that emerges as the total energy and mode coupling increase, which keeps a reacting system increasingly trapped in that region.