4 resultados para Tolerance test
em National Center for Biotechnology Information - NCBI
Resumo:
ATP-sensitive K+ (KATP) channels regulate many cellular functions by linking cell metabolism to membrane potential. We have generated KATP channel-deficient mice by genetic disruption of Kir6.2, which forms the K+ ion-selective pore of the channel. The homozygous mice (Kir6.2−/−) lack KATP channel activity. Although the resting membrane potential and basal intracellular calcium concentrations ([Ca2+]i) of pancreatic beta cells in Kir6.2−/− are significantly higher than those in control mice (Kir6.2+/+), neither glucose at high concentrations nor the sulfonylurea tolbutamide elicits a rise in [Ca2+]i, and no significant insulin secretion in response to either glucose or tolbutamide is found in Kir6.2−/−, as assessed by perifusion and batch incubation of pancreatic islets. Despite the defect in glucose-induced insulin secretion, Kir6.2−/− show only mild impairment in glucose tolerance. The glucose-lowering effect of insulin, as assessed by an insulin tolerance test, is increased significantly in Kir6.2−/−, which could protect Kir6.2−/− from developing hyperglycemia. Our data indicate that the KATP channel in pancreatic beta cells is a key regulator of both glucose- and sulfonylurea-induced insulin secretion and suggest also that the KATP channel in skeletal muscle might be involved in insulin action.
Resumo:
Recent studies have demonstrated that the overexpression of the c-myc gene in the liver of transgenic mice leads to an increase in both utilization and accumulation of glucose in the liver, suggesting that c-Myc transcription factor is involved in the control of liver carbohydrate metabolism in vivo. To determine whether the increase in c-Myc might control glucose homeostasis, an intraperitoneal glucose tolerance test was performed. Transgenic mice showed lower levels of blood glucose than control animals, indicating that the overexpression of c-Myc led to an increase of blood glucose disposal by the liver. Thus, the increase in c-Myc might counteract diabetic hyperglycemia. In contrast to control mice, transgenic mice treated with streptozotocin showed normalization of concentrations of blood glucose, ketone bodies, triacylglycerols and free fatty acids in the absence of insulin. These findings resulted from the normalization of liver metabolism in these animals. While low glucokinase activity was detected in the liver of diabetic control mice, high levels of both glucokinase mRNA and enzyme activity were noted in the liver of streptozotocin-treated transgenic mice, which led to an increase in intracellular levels of glucose 6-phosphate and glycogen. The liver of these mice also showed an increase in pyruvate kinase activity and lactate production. Furthermore, normalization of both the expression of genes involved in the control of gluconeogenesis and ketogenesis and the production of glucose and ketone bodies was observed in streptozotocin-treated transgenic mice. Thus, these results suggested that c-Myc counteracted diabetic alterations through its ability to induce hepatic glucose uptake and utilization and to block the activation of gluconeogenesis and ketogenesis.
Resumo:
Dehydrins (DHNs, LEA D-11) are plant proteins present during environmental stresses associated with dehydration or low temperatures and during seed maturation. Functions of DHNs have not yet been defined. Earlier, we hypothesized that a ≈35-kDa DHN and membrane properties that reduce electrolyte leakage from seeds confer chilling tolerance during seedling emergence of cowpea (Vigna unguiculata L. Walp.) in an additive and independent manner. Evidence for this hypothesis was not rigorous because it was based on correlations of presence/absence of the DHN and slow electrolyte leakage with chilling tolerance in closely related cowpea lines that have some other genetic differences. Here, we provide more compelling genetic evidence for involvement of the DHN in chilling tolerance of cowpea. We developed near-isogenic lines by backcrossing. We isolated and determined the sequence of a cDNA corresponding to the ≈35-kDa DHN and used gene-specific oligonucleotides derived from it to test the genetic linkage between the DHN presence/absence trait and the DHN structural gene. We tested for association between the DHN presence/absence trait and both low-temperature seed emergence and electrolyte leakage. We show that allelic differences in the Dhn structural gene map to the same position as the DHN protein presence/absence trait and that the presence of the ≈35-kDa DHN is indeed associated with chilling tolerance during seedling emergence, independent of electrolyte leakage effects. Two types of allelic variation in the Dhn gene were identified in the protein-coding region, deletion of one Φ-segment from the DHN-negative lines and two single amino acid substitutions.
Resumo:
Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.