11 resultados para Tissue Inhibitors

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a “fold-specific” inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription–PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tsetse thrombin inhibitor, a potent and specific low molecular mass (3,530 Da) anticoagulant peptide, was purified previously from salivary gland extracts of Glossina morsitans morsitans (Diptera: Glossinidae). A 303-bp coding sequence corresponding to the inhibitor has now been isolated from a tsetse salivary gland cDNA library by using degenerate oligonucleotide probes. The full-length cDNA contains a 26-bp untranslated segment at its 5′ end, followed by a 63-bp sequence corresponding to a putative secretory signal peptide. A 96-bp segment codes for the mature tsetse thrombin inhibitor, whose predicted molecular weight matches that of the purified native protein. Based on its lack of homology to any previously described family of molecules, the tsetse thrombin inhibitor appears to represent a unique class of naturally occurring protease inhibitors. Recombinant tsetse thrombin inhibitor expressed in Escherichia coli and the chemically synthesized peptide are both substantially less active than the purified native protein, suggesting that posttranslational modification(s) may be necessary for optimal inhibitory activity. The tsetse thrombin inhibitor gene, which is present as a single copy in the tsetse genome, is expressed at high levels in salivary glands and midguts of adult tsetse flies, suggesting a possible role for the anticoagulant in both feeding and processing of the bloodmeal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein–kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein–kinin system could be involved in the development or progression of cardiovascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11β-HSD-1 acts as a functional 11β-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11β-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11β-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11β-HSD-1 inhibitors may protect against hippocampal function decline with age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major therapeutic target in the search for a cure to the devastating Alzheimer's disease is γ-secretase. This activity resides in a multiprotein enzyme complex responsible for the generation of Aβ42 peptides, precipitates of which are thought to cause the disease. γ-Secretase is also a critical component of the Notch signal transduction pathway; Notch signals regulate development and differentiation of adult self-renewing cells. This has led to the hypothesis that therapeutic inhibition of γ-secretase may interfere with Notch-related processes in adults, most alarmingly in hematopoiesis. Here, we show that application of γ-secretase inhibitors to fetal thymus organ cultures interferes with T cell development in a manner consistent with loss or reduction of Notch1 function. Progression from an immature CD4−/CD8− state to an intermediate CD4+/CD8+ double-positive state was repressed. Furthermore, treatment beginning later at the double-positive stage specifically inhibited CD8+ single-positive maturation but did not affect CD4+ single-positive cells. These results demonstrate that pharmacological γ-secretase inhibition recapitulates Notch1 loss in a vertebrate tissue and present a system in which rapid evaluation of γ-secretase-targeted pharmaceuticals for their ability to inhibit Notch activity can be performed in a relevant context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crucial role of cell signaling in hemostasis is clearly established by the action of the downstream coagulation protease thrombin that cleaves platelet-expressed G-protein-coupled protease activated receptors (PARs). Certain PARs are cleaved by the upstream coagulation proteases factor Xa (Xa) and the tissue factor (TF)–factor VIIa (VIIa) complex, but these enzymes are required at high nonphysiological concentrations and show limited recognition specificity for the scissile bond of target PARs. However, defining a physiological mechanism of PAR activation by upstream proteases is highly relevant because of the potent anti-inflammatory in vivo effects of inhibitors of the TF initiation complex. Activation of substrate factor X (X) by the TF–VIIa complex is here shown to produce enhanced cell signaling in comparison to the TF–VIIa complex alone, free Xa, or Xa that is generated in situ by the intrinsic activation complex. Macromolecular assembly of X into a ternary complex of TF–VIIa–X is required for proteolytic conversion to Xa, and product Xa remains transiently associated in a TF–VIIa–Xa complex. By trapping this complex with a unique inhibitor that preserves Xa activity, we directly show that Xa in this ternary complex efficiently activates PAR-1 and -2. These experiments support the concept that proinflammatory upstream coagulation protease signaling is mechanistically coupled and thus an integrated part of the TF–VIIa-initiated coagulation pathway, rather than a late event during excessive activation of coagulation and systemic generation of proteolytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms underlying the menstrual lysis leading to shedding of the human endometrium and its accompanying bleeding are still largely unknown. In particular, whether breakdown of the endometrial fibrillar extra-cellular matrix that precedes bleeding depends on aspartic-, cysteine-, serine-, or metalloproteinases remains unclear. In the present study, menstrual regression of the human endometrium was mimicked in organ culture. Whereas sex steroids could preserve tissue integrity only in nonperimenstrual explants, matrix breakdown upon sex steroid deprivation was completely and reversibly inhibited at all stages of the menstrual cycle by specific inhibitors of matrix metalloproteinases, but not by inhibitors of the other classes of proteinases. Matrix metalloproteinases are thus identified as the key class of proteinases involved in the initiation of menstruation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV-1 replication depends on the viral enzyme integrase that mediates integration of a DNA copy of the virus into the host cell genome. This enzyme represents a novel target to which antiviral agents might be directed. Three compounds, 3,5-dicaffeoylquinic acid, 1-methoxyoxalyl-3,5-dicaffeoylquinic acid, and L-chicoric acid, inhibit HIV-1 integrase in biochemical assays at concentrations ranging from 0.06-0.66 microgram/ml; furthermore, these compounds inhibit HIV-1 replication in tissue culture at 1-4 microgram/ml. The toxic concentrations of these compounds are fully 100-fold greater than their antiviral concentrations. These compounds represent a potentially important new class of antiviral agents that may contribute to our understanding of the molecular mechanisms of viral integration. Thus, the dicaffeoylquinic acids are promising leads to new anti-HIV therapeutics and offer a significant advance in the search for new HIV enzyme targets as they are both specific for HIV-1 integrase and active against HIV-1 in tissue culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.