5 resultados para Ti3Si phase stability
em National Center for Biotechnology Information - NCBI
Resumo:
Initiation factor eIF4G is an essential protein required for initiation of mRNA translation via the 5′ cap-dependent pathway. It interacts with eIF4E (the mRNA 5′ cap-binding protein) and serves as an anchor for the assembly of further initiation factors. With treatment of Saccharomyces cerevisiae with rapamycin or with entry of cells into the diauxic phase, eIF4G is rapidly degraded, whereas initiation factors eIF4E and eIF4A remain stable. We propose that nutritional deprivation or interruption of the TOR signal transduction pathway induces eIF4G degradation.
Resumo:
Ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) is presented as a new, superior method for the analysis of RNA. IP RP HPLC provides a fast and reliable alternative to classical methods of RNA analysis, including separation of different RNA species, quantification and purification. RNA is stable under the analysis conditions used; degradation of RNA during the analyses was not observed. The versatility of IP RP HPLC for RNA analysis is demonstrated. Components of an RNA ladder, ranging in size from 155 to 1770 nt, were resolved. RNA transcripts of up to 5219 nt were analyzed, their integrity determined and they were quantified and purified. Purification of mRNA from total RNA is described, separating mouse rRNA from poly(A)+ mRNA. IP RP HPLC is also suitable for the separation and purification of DIG-labeled from unlabeled RNA. RNA purified by IP RP HPLC exhibits improved stability.
Resumo:
The solvation energies of salt bridges formed between the terminal carboxyl of the host pentapeptide AcWL- X-LL and the side chains of Arg or Lys in the guest (X) position have been measured. The energies were derived from octanol-to-buffer transfer free energies determined between pH 1 and pH 9. 13C NMR measurements show that the salt bridges form in the octanol phase, but not in the buffer phase, when the side chains and the terminal carboxyl group are charged. The free energy of salt-bridge formation in octanol is approximately -4 kcal/mol (1 cal = 4.184 J), which is equal to or slightly larger than the sum of the solvation energies of noninteracting pairs of charged side chains. This is about one-half the free energy that would result from replacing a charge pair in octanol with a pair of hydrophobic residues of moderate size. Therefore, salt bridging in octanol can change the favorable aqueous solvation energy of a pair of oppositely charged residues to neutral or slightly unfavorable but cannot provide the same free energy decrease as hydrophobic residues. This is consistent with recent computational and experimental studies of protein stability.
Resumo:
In Escherichia coli, the sigma factor, RpoS, is a central regulator in stationary-phase cells. We have identified a gene, sprE (stationary-phase regulator), as essential for the negative regulation of rpoS expression. SprE negatively regulates the rpoS gene product at the level of protein stability, perhaps in response to nutrient availability. The ability of SprE to destabilize RpoS is dependent on the ClpX/ClpP protease. Based on homology, SprE is a member of the response regulator family of proteins. SprE is the first response regulator identified that is implicated in the control of protein stability. Moreover, SprE is the first reported protein that appears to regulate rpoS in response to a specific environmental parameter.
Resumo:
Evaluation of nitronium ion-transfer equilibria, L1NO2+ + L2 = L2NO2+ + L1 (where L1 and L2 are ligands 1 and 2, respectively) by Fourier-transform ion cyclotron resonance mass spectrometry and application of the kinetic method, based on the metastable fragmentation of L1(NO2+)L2 nitronium ion-bound dimers led to a scale of relative gas-phase nitronium ion affinities. This scale, calibrated to a recent literature value for the NO2+ affinity of water, led for 18 ligands, including methanol, ammonia, representative ketones, nitriles, and nitroalkanes, to absolute NO2+ affinities, that fit a reasonably linear general correlation when plotted vs. the corresponding proton affinities (PAs). The slope of the plot depends to a certain extent on the specific nature of the ligands and, hence, the correlations between the NO2+ affinities, and the PAs of a given class of compounds display a better linearity than the general correlation and may afford a useful tool for predicting the NO2+ affinity of a molecule based on its PA. The NO2+ binding energies are considerably lower than the corresponding PAs and well below the binding energies of related polyatomic cations, such as NO+, a trend consistent with the available theoretical results on the structure and the stability of simple NO2+ complexes. The present study reports an example of extension of the kinetic method to dimers, such as L1(NO2+)L2, bound by polyatomic ions, which may considerably widen its scope. Finally, measurement of the NO2+ affinity of ammonia allowed evaluation of the otherwise inaccessible PA of the amino group of nitramide and, hence, direct experimental verification of previous theoretical estimates.