10 resultados para Threshold energies
em National Center for Biotechnology Information - NCBI
Resumo:
Contrary to previous theoretical studies at the UHF/6-31G* level, the methonium radical dication CH52+ is not a Cs symmetrical structure with a 2e—3c bond but a C2v symmetrical structure 1 with two 2e—3c bonds (at the UHF/6-31G**, UMP2/6-31G**, and UQCISD(T)/6-311G** levels). The Cs symmetrical structure is not even a minimum at the higher level of calculations. The four hydrogen atoms in 1 are bonded to the carbon atom by two 2e—3c bonds and the fifth hydrogen atom by a 2e—2c bond. The unpaired electron of 1 is located in a formal p-orbital (of the sp2-hybridized carbon atom) perpendicular to the plane of the molecule. Hydrogen scrambling in 1 is however extremely facile, as is in other C1 cations. It is found that the protonation of methane to CH5+ decreases the energy for subsequent homolytic cleavage resulting in the exothermic (24.1 kcal/mol) formation of CH4+•. Subsequent reaction with neutral methane while reforming CH5+ gives the methyl radical enabling reaction with excess methane to ethane and H2. The overall reaction is endothermic by 11.4 kcal/mol, but offers under conditions of oxidative removal of H2 an alternative to the more energetic carbocationic conversion of methane.
Resumo:
NMR investigations have been carried out of complexes between bovine chymotrypsin Aα and a series of four peptidyl trifluoromethyl ketones, listed here in order of increasing affinity for chymotrypsin: N-Acetyl-l-Phe-CF3, N-Acetyl-Gly-l-Phe-CF3, N-Acetyl-l-Val-l-Phe-CF3, and N-Acetyl-l-Leu-l-Phe-CF3. The D/H fractionation factors (φ) for the hydrogen in the H-bond between His 57 and Asp 102 (His 57-Hδ1) in these four complexes at 5°C were in the range φ = 0.32–0.43, expected for a low-barrier hydrogen bond. For this series of complexes, measurements also were made of the chemical shifts of His 57-Hɛ1 (δ2,2-dimethylsilapentane-5-sulfonic acid 8.97–9.18), the exchange rate of the His 57-Hδ1 proton with bulk water protons (284–12.4 s−1), and the activation enthalpies for this hydrogen exchange (14.7–19.4 kcal⋅mol−1). It was found that the previously noted correlations between the inhibition constants (Ki 170–1.2 μM) and the chemical shifts of His 57-Hδ1 (δ2,2-dimethylsilapentane-5-sulfonic acid 18.61–18.95) for this series of peptidyl trifluoromethyl ketones with chymotrypsin [Lin, J., Cassidy, C. S. & Frey, P. A. (1998) Biochemistry 37, 11940–11948] could be extended to include the fractionation factors, hydrogen exchange rates, and hydrogen exchange activation enthalpies. The results support the proposal of low barrier hydrogen bond-facilitated general base catalysis in the addition of Ser 195 to the peptidyl carbonyl group of substrates in the mechanism of chymotrypsin-catalyzed peptide hydrolysis. Trends in the enthalpies for hydrogen exchange and the fractionation factors are consistent with a strong, double-minimum or single-well potential hydrogen bond in the strongest complexes. The lifetimes of His 57-Hδ1, which is solvent shielded in these complexes, track the strength of the hydrogen bond. Because these lifetimes are orders of magnitude shorter than those of the complexes themselves, the enzyme must have a pathway for hydrogen exchange at this site that is independent of dissociation of the complexes.
Resumo:
A novel thermodynamic approach to the reversible unfolding of proteins in aqueous urea solutions has been developed based on the premise that urea ligands are bound cooperatively to the macromolecule. When successive stoichiometric binding constants have values larger than expected from statistical effects, an equation for moles of bound urea can be derived that contains imaginary terms. For a very steep unfolding curve, one can then show that the fraction of protein unfolded, B̄, depends on the square of the urea concentration, U, and is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\bar {B}=\frac{{\mathit{A}}^{{\mathit{2}}}_{{\mathit{1}}}{\mathit{e}}^{{\mathrm{{\lambda}}}n\bar {B}}{\mathit{U}}^{{\mathit{2}}}}{{\mathrm{1\hspace{.167em}+\hspace{.167em}}}{\mathit{A}}^{{\mathrm{2}}}_{{\mathrm{1}}}{\mathit{e}}^{{\mathrm{{\lambda}}}\bar {B}}{\mathit{U}}^{{\mathrm{2}}}}{\mathrm{.}}\end{equation*}\end{document} A12 is the binding constant as B̄→ 0, and λ is a parameter that reflects the augmentation in affinities of protein for urea as the moles bound increases to the saturation number, n. This equation provides an analytic expression that reproduces the unfolding curve with good precision, suggests a simple linear graphical procedure for evaluating A12 and λ, and leads to the appropriate standard free energy changes. The calculated ΔG° values reflect the coupling of urea binding with unfolding of the protein. Some possible implications of this analysis to protein folding in vivo are described.
Resumo:
Blindsight is the rare and paradoxical ability of some human subjects with occipital lobe brain damage to discriminate unseen stimuli in their clinically blind field defects when forced-choice procedures are used, implying that lesions of striate cortex produce a sharp dissociation between visual performance and visual awareness. Skeptics have argued that this is no different from the behavior of normal subjects at the lower limits of conscious vision, at which such dissociations could arise trivially by using different response criteria during clinical and forced-choice tests. We tested this claim explicitly by measuring the sensitivity of a hemianopic patient independently of his response criterion in yes-no and forced-choice detection tasks with the same stimulus and found that, unlike normal controls, his sensitivity was significantly higher during the forced-choice task. Thus, the dissociation by which blindsight is defined is not simply due to a difference in the patients’ response bias between the two paradigms. This result implies that blindsight is unlike normal, near-threshold vision and that information about the stimulus is processed in blindsighted patients in an unusual way.
Resumo:
Experiments were performed on three abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) mutants, notabilis, flacca, and sitiens, to investigate the role of ABA and jasmonic acid (JA) in the generation of electrical signals and Pin2 (proteinase inhibitor II) gene expression. We selected these mutants because they contain different levels of endogenous ABA. ABA levels in the mutant sitiens were reduced to 8% of the wild type, in notabilis they were reduced to 47%, and in flacca they were reduced to 21%. In wild-type and notabilis tomato plants the induction of Pin2 gene expression could be elicited by heat treatment, current application, or mechanical wounding. In flacca and sitiens only heat stimulation induced Pin2 gene expression. JA levels in flacca and sitiens plants also accumulated strongly upon heat stimulation but not upon mechanical wounding or current application. Characteristic electrical signals evolved in the wild type and in the notabilis and flacca mutants consisting of a fast action potential and a slow variation potential. However, in sitiens only heat evoked electrical signals; mechanical wounding and current application did not change the membrane potential. In addition, exogenous application of ABA to wild-type tomato plants induced transient changes in membrane potentials, indicating the involvement of ABA in the generation of electrical signals. Our data strongly suggest the presence of a minimum threshold value of ABA within the plant that is essential for the early events in electrical signaling and mediation of Pin2 gene expression upon wounding. In contrast, heat-induced Pin2 gene expression and membrane potential changes were not dependent on the ABA level but, rather, on the accumulation of JA.
Resumo:
The ribonucleoprotein telomerase synthesizes telomeric DNA by copying an intrinsic RNA template. In most cancer cells, telomerase is highly activated. Here we report a telomerase-based antitumor strategy: expression of mutant-template telomerase RNAs in human cancer cells. We expressed mutant-template human telomerase RNAs in prostate (LNCaP) and breast (MCF-7) cancer cell lines. Even a low threshold level of expression of telomerase RNA gene constructs containing various mutant templates, but not the control wild-type template, decreased cellular viability and increased apoptosis. This occurred despite the retention of normal levels of the endogenous wild-type telomerase RNA and endogenous wild-type telomerase activity and unaltered stable telomere lengths. In vivo tumor xenografts of a breast cancer cell line expressing a mutant-template telomerase RNA also had decreased growth rates. Therefore, mutant-template telomerase RNAs exert a strongly dominant-negative effect on cell proliferation and tumor growth. These results support the potential use of mutant-template telomerase RNA expression as an antineoplastic strategy.
Resumo:
The solvation energies of salt bridges formed between the terminal carboxyl of the host pentapeptide AcWL- X-LL and the side chains of Arg or Lys in the guest (X) position have been measured. The energies were derived from octanol-to-buffer transfer free energies determined between pH 1 and pH 9. 13C NMR measurements show that the salt bridges form in the octanol phase, but not in the buffer phase, when the side chains and the terminal carboxyl group are charged. The free energy of salt-bridge formation in octanol is approximately -4 kcal/mol (1 cal = 4.184 J), which is equal to or slightly larger than the sum of the solvation energies of noninteracting pairs of charged side chains. This is about one-half the free energy that would result from replacing a charge pair in octanol with a pair of hydrophobic residues of moderate size. Therefore, salt bridging in octanol can change the favorable aqueous solvation energy of a pair of oppositely charged residues to neutral or slightly unfavorable but cannot provide the same free energy decrease as hydrophobic residues. This is consistent with recent computational and experimental studies of protein stability.
Resumo:
To prevent mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission, it is important to identify its determinants. Because HIV-1 RNA levels can be reduced by antiviral therapy, we examined the role of maternal plasma HIV-1 RNA level in mother-to-child transmission. We used quantitative competitive PCR to measure HIV-RNA in 30 infected pregnant women and then followed their infants prospectively; 27% of the women transmitted HIV-1 to their infants and maternal plasma HIV-1 RNA level correlated strikingly with transmission. Eight of the 10 women with the highest HIV-1 RNA levels at delivery (190,400-1,664,100 copies per ml of plasma) transmitted, while none of the 20 women with lower levels (500-155,800 copies per ml) did (P = 0.0002). Statistical analysis of the distribution of HIV-1 RNA loads in these 30 women projected a threshold for mother-to-child transmission in a larger population; the probability of a woman with a viral RNA level of < or = 100,000 copies per ml not transmitting is predicted to be 97%. Examination of serial HIV-1 RNA levels during pregnancy showed that viral load was stable in women who did not initiate or change antiviral therapy. These data identify maternal plasma HIV-1-RNA level as a major determinant of mother-to-child transmission and suggest that quantitation of HIV-1 RNA may predict the risk of transmission.
Resumo:
Speech interface technology, which includes automatic speech recognition, synthetic speech, and natural language processing, is beginning to have a significant impact on business and personal computer use. Today, powerful and inexpensive microprocessors and improved algorithms are driving commercial applications in computer command, consumer, data entry, speech-to-text, telephone, and voice verification. Robust speaker-independent recognition systems for command and navigation in personal computers are now available; telephone-based transaction and database inquiry systems using both speech synthesis and recognition are coming into use. Large-vocabulary speech interface systems for document creation and read-aloud proofing are expanding beyond niche markets. Today's applications represent a small preview of a rich future for speech interface technology that will eventually replace keyboards with microphones and loud-speakers to give easy accessibility to increasingly intelligent machines.
Resumo:
The genetic relationships of colony members in the ant Myrmica tahoensis were determined on the basis of highly polymorphic microsatellite DNA loci. These analyses show that colonies fall into one of two classes. In roughly half of the sampled colonies, workers and female offspring appear to be full sisters. The remaining colonies contain offspring produced by two or more queens. Colonies that produce female sexuals are always composed of highly related females, while colonies that produce males often show low levels of nestmate relatedness. These results support theoretical predictions that workers should skew sex allocation in response to relatedness asymmetries found within colonies. The existence of a relatedness threshold below which female sexuals are not produced suggests a possible mechanism for worker perception of relatedness. Two results indicate that workers use genetic cues, not queen number, in making sex-allocation decisions. (i) The number of queens in a colony was not significantly correlated with either the level of relatedness asymmetry or the sex ratio. (ii) Sex-ratio shifts consistent with a genetically based mechanism of relatedness assessment were seen in an experiment involving transfers of larvae among unrelated nests. Thus workers appear to make sex-allocation decisions on the basis of larval cues and appear to be able to adjust sex ratios long after egg laying.