2 resultados para Thermochemical biofuels
em National Center for Biotechnology Information - NCBI
Resumo:
In a recent article [Khan, A. U., Kovacic, D., Kolbanovsky, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], the authors claimed that ONOO−, after protonation to ONOOH, decomposes into 1HNO and 1O2 according to a spin-conserved unimolecular mechanism. This claim was based partially on their observation that nitrosylhemoglobin is formed via the reaction of peroxynitrite with methemoglobin at neutral pH. However, thermochemical considerations show that the yields of 1O2 and 1HNO are about 23 orders of magnitude lower than those of ⋅NO2 and ⋅OH, which are formed via the homolysis of ONOOH. We also show that methemoglobin does not form with peroxynitrite any spectrally detectable product, but with contaminations of nitrite and H2O2 present in the peroxynitrite sample. Thus, there is no need to modify the present view of the mechanism of ONOOH decomposition, according to which initial homolysis into a radical pair, [ONO⋅ ⋅OH]cage, is followed by the diffusion of about 30% of the radicals out of the cage, while the rest recombines to nitric acid in the solvent cage.
Resumo:
The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.