2 resultados para Thermal events

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A question often posed in protein folding/unfolding studies is whether the process is fully cooperative or whether it contains sequential elements. To address this question, one needs tools capable of resolving different events. It seems that, at least in certain cases, two-dimensional (2D) IR correlation spectroscopy can provide answers to this question. To illustrate this point, we have turned to the Cro-V55C dimer of the λ Cro repressor, a protein known to undergo thermal unfolding in two discrete steps through a stable equilibrium intermediate. The secondary structure of this intermediate is compatible with that of a partially unfolded protein and involves a reorganization of the N terminus, whereas the antiparallel β-ribbon formed by the C-terminal part of each subunit remains largely intact. To establish whether the unfolding process involves sequential events, we have performed a 2D correlation analysis of IR spectra recorded over the temperature range of 20–95°C. The 2D IR correlation analysis indeed provides evidence for a sequential formation of the stable intermediate, which is created in three (closely related) steps. A first step entails the unfolding of the short N-terminal β-strand, followed by the unfolding of the α-helices in a second step, and the third step comprises the reorganization of the remaining β-sheet and of some unordered segments in the protein. The complete unfolding of the stable intermediate at higher temperatures also undergoes sequential events that ultimately end with the breaking of the H bonds between the two β-strands at the dimer interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In biomolecular systems, the mechanical transfer of free energy occurs with both high efficiency and high speed. It is shown here that such a transfer can be achieved only if the participating free-energy-storing elements exhibit opposing relationships between their content of free energy and the force they exert in the transfer direction. A kinetic equilibrium of forces (KEF) results, in which the transfer of free energy is mediated essentially by thermal molecular motion. On the basis of present evidence, KEF is used as a guiding principle in developing a mechanical model of the crossbridge cycle in muscle contraction. The model allows the basic features of molecular events to be visualized in terms of plausible structures. Real understanding of the process will require identification of the elements that perform the functions described here. Besides chemomechanical energy transduction, KEF may have a role in other biomolecular processes in which free energy is transferred mechanically over large distances.