27 resultados para Therapeutic ends

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic defect in a CC-chemokine receptor (CCR)-5, the principal coreceptor for the macrophage-tropic HIV type 1 (HIV-1), recently was found to naturally protect CCR-5-defective, but healthy, individuals from HIV-1 infection. In this study, we mimic the natural resistance of the CCR-5-defective individuals by designing a strategy to phenotypically knock out CCR-5. The inactivation of the CCR-5 coreceptor is accomplished by targeting a modified CC-chemokine to the endoplasmic reticulum to block the surface expression of newly synthesized CCR-5. The lymphocytes transduced to express the intracellular chemokine, termed “intrakine,” were found to be viable and resistant to macrophage-tropic HIV-1 infection. Thus, this gene-based intrakine strategy targeted at the conserved cellular receptor for the prevention of HIV-1 entry should have significant advantages over currently described approaches for HIV-1 therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal translocations induced by ionizing radiation and radiomimetic drugs are thought to arise by incorrect joining of DNA double-strand breaks. To dissect such misrepair events at a molecular level, large-scale, bleomycin-induced rearrangements in the aprt gene of Chinese hamster ovary D422 cells were mapped, the breakpoints were sequenced, and the original non-aprt parental sequences involved in each rearrangement were recovered from nonmutant cells. Of seven rearrangements characterized, six were reciprocal exchanges between aprt and unrelated sequences. Consistent with a mechanism involving joining of exchanged double-strand break ends, there was, in most cases, no homology between the two parental sequences, no overlap in sequences retained at the two newly formed junctions, and little or no loss of parental sequences (usually ≤2 bp) at the breakpoints. The breakpoints were strongly correlated (P < 0.0001) with expected sites of bleomycin-induced, double-strand breaks. Fluorescence in situ hybridization indicated that, in six of the mutants, the rearrangement was accompanied by a chromosomal translocation at the aprt locus, because upstream and downstream flanking sequences were detected on separate chromosomes. The results suggest that repair of free radical-mediated, double-strand breaks in confluence-arrested cells is effected by a conservative, homology-independent, end-joining pathway that does not involve single-strand intermediate and that misjoining of exchanged ends by this pathway can directly result in chromosomal translocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 ± 22% when the treatment is started 12 h before ischemia and by 63 ± 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1β-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E2 production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an inherited muscle-wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. We have previously shown that utrophin, the autosomal homologue of dystrophin, is able to compensate for the absence of dystrophin in a mouse model of DMD; we have therefore undertaken a detailed study of the transcriptional regulation of utrophin to identify means of effecting its up-regulation in DMD muscle. We have previously isolated a promoter element lying within the CpG island at the 5′ end of the gene and have shown it to be synaptically regulated in vivo. In this paper, we show that there is an alternative promoter lying within the large second intron of the utrophin gene, 50 kb 3′ to exon 2. The promoter is highly regulated and drives transcription of a widely expressed unique first exon that splices into a common full-length mRNA at exon 3. The two utrophin promoters are independently regulated, and we predict that they respond to discrete sets of cellular signals. These findings significantly contribute to understanding the molecular physiology of utrophin expression and are important because the promoter reported here provides an alternative target for transcriptional activation of utrophin in DMD muscle. This promoter does not contain synaptic regulatory elements and might, therefore, be a more suitable target for pharmacological manipulation than the previously described promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent findings intriguingly place DNA double-strand break repair proteins at chromosome ends in yeast, where they help maintain normal telomere length and structure. In the present study, an essential telomere function, the ability to cap and thereby protect chromosomes from end-to-end fusions, was assessed in repair-deficient mouse cell lines. By using fluorescence in situ hybridization with a probe to telomeric DNA, spontaneously occurring chromosome aberrations were examined for telomere signal at the points of fusion, a clear indication of impaired end-capping. Telomeric fusions were not observed in any of the repair-proficient controls and occurred only rarely in a p53 null mutant. In striking contrast, chromosomal end fusions that retained telomeric sequence were observed in nontransformed DNA-PKcs-deficient cells, where they were a major source of chromosomal instability. Metacentric chromosomes created by telomeric fusion became even more abundant in these cells after spontaneous immortalization. Restoration of repair proficiency through transfection with a functional cDNA copy of the human DNA-PKcs gene reduced the number of fusions compared with a negative transfection control. Virally transformed cells derived from Ku70 and Ku80 knockout mice also displayed end-to-end fusions. These studies demonstrate that DNA double-strand break repair genes play a dual role in maintaining chromosomal stability in mammalian cells, the known role in repairing incidental DNA damage, as well as a new protective role in telomeric end-capping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of endotoxin from Gram-negative bacteria signals the innate immune system to up-regulate bacterial clearance and/or killing mechanisms. Paradoxically, such responses also contribute to septic shock, a clinical problem occurring with high frequency in Gram-negative septicemia. CD14 is a receptor for endotoxin (lipopolysaccharide, LPS) and is thought to have an essential role in innate immune responses to infection and thereby in the development of septic shock. Using a novel rabbit model of endotoxic shock produced by multiple exposures to endotoxin, we show that anti-rabbit CD14 mAb, which blocks LPS-CD14 binding, protects against organ injury and death even when the antibody is administered after initial exposures to LPS. In contrast, anti-rabbit tumor necrosis factor mAb treatment fails to protect when administered after LPS injections. These results support the concept that anti-CD14 treatment provides a new therapeutic window for the prevention of pathophysiologic changes that result from cumulative exposures to LPS during septic shock in man.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive and active immunization against outer surface protein A (OspA) has been successful in protecting laboratory animals against subsequent infection with Borrelia burgdorferi. Antibodies (Abs) to OspA convey full protection, but only when they are present at the time of infection. Abs inactivate spirochetes within the tick and block their transmission to mammals, but do not affect established infection because of the loss of OspA in the vertebrate host. Our initial finding that the presence of high serum titers of anti-OspC Abs (5 to 10 μg/ml) correlates with spontaneous resolution of disease and infection in experimentally challenged immunocompetent mice suggested that therapeutic vaccination with OspC may be feasible. We now show that polyclonal and monospecific mouse immune sera to recombinant OspC, but not to OspA, of B. burgdorferi resolve chronic arthritis and carditis and clear disseminated spirochetes in experimentally infected C.B.-17 severe combined immunodeficient mice in a dose-dependent manner. This was verified by macroscopical and microscopical examination of affected tissues and recultivation of spirochetes from ear biopsies. Complete resolution of disease and infection was achieved, independent of whether OspC-specific immune sera (10 μg OspC-specific Abs) were repeatedly given (4× in 3- to 4-day intervals) before the onset (day 10 postinfection) or at the time of fully established arthritis and carditis (days 19 or 60 postinfection). The results indicate that in mice spirochetes constitutively express OspC and are readily susceptible to protective OspC-specific Abs throughout the infection. Thus, an OspC-based vaccine appears to be a candidate for therapy of Lyme disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of nontoxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) are commonly known to regulate cell proliferation. However, previous reports suggest that in cultured postmitotic neurons, activation of CDKs is a signal for death rather than cell division. We determined whether CDK activation occurs in mature adult neurons during focal stroke in vivo and whether this signal was required for neuronal death after reperfusion injury. Cdk4/cyclin D1 levels and phosphorylation of its substrate retinoblastoma protein (pRb) increase after stroke. Deregulated levels of E2F1, a transcription factor regulated by pRb, are also observed. Administration of a CDK inhibitor blocks pRb phosphorylation and the increase in E2F1 levels and dramatically reduces neuronal death by 80%. These results indicate that CDKs are an important therapeutic target for the treatment of reperfusion injury after ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral DNA integration is mediated by the preintegration complex, a large nucleoprotein complex derived from the core of the infecting virion. We previously have used Mu-mediated PCR to probe the nucleoprotein organization of Moloney murine leukemia virus preintegration complexes. A region of protection spans several hundred base pairs at each end of the viral DNA, and strong enhancements are present near the termini. Here, we show that these footprints reflect a specific association between integrase and the viral DNA ends in functional preintegration complexes. Barrier-to-autointegration factor, a cellular protein that blocks autointegration of Moloney murine leukemia virus DNA, also plays an indirect role in generating the footprints at the ends of the viral DNA. We have exploited Mu-mediated PCR to examine the effect of mutations at the viral DNA termini on complex formation. We find that a replication competent mutant with a deletion at one end of the viral DNA still exhibits a strong enhancement about 20 bp from the terminus of the mutant DNA end. The site of the enhancement therefore appears to be at a fixed distance from the ends of the viral DNA. We also find that a mutation at one end of the viral DNA, which renders the virus incompetent for replication, abolishes the enhancements and protection at both the U3 and U5 ends. A pair of functional viral DNA ends therefore are required to interact before the chemical step of 3′ end processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transposon Tn5090/Tn402 encodes a 559 amino acid transposase, TniA, with a DDE motif. Gel mobility shifting and cleavage protection analysis with DNase I and hydroxyl radical probes revealed that TniA binds to multiple repeat sequences on either terminus of Tn5090/Tn402. Four of these TniA-binding 19mers occurred on the left-hand (t) end and two on the right-hand (i) end. Hydroxyl radical cleavage protection demonstrated the presence of 3–6 bp contact sequences on one face of the DNA helix. The binding pattern and organisation of repeats suggested parallels between Tn5090/Tn402 and Mu, which controls its transpositional activity in the assembly step of a higher order transpososome complex. The complex terminal structure and genes of transposase and nucleotide-binding proteins in tandem are hallmarks of the handful of Mu-like elements that are known to date.