38 resultados para The cancer genome atlas
em National Center for Biotechnology Information - NCBI
Resumo:
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35–280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.
Resumo:
A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.
Resumo:
Understanding the structural organization of the genome is particularly relevant in segmented double-stranded RNA viruses, which exhibit endogenous transcription activity. These viruses are molecular machines capable of repeated cycles of transcription within the intact capsid. Rotavirus, a major cause of infantile gastroenteritis, is a prototypical segmented double-stranded RNA virus. From our three-dimensional structural analyses of rotavirus examined under various chemical conditions using electron cryomicroscopy, we show here that the viral genome exhibits a remarkable conformational flexibility by reversibly changing its packaging density. In the presence of ammonium ions at high pH, the genome condenses to a radius of ≈180 Å from ≈220 Å. Upon returning to physiological conditions, the genome re-expands and fully maintains its transcriptional properties. These studies provide further insights into the genome organization and suggest that the observed isometric and concentric nature of the condensation is due to strong interactions between the genome core and the transcription enzymes anchored to the capsid inner surface. The ability of the genome to condense beyond what is normally observed in the native virus indicates that the negative charges on the RNA in the native state may be only partially neutralized. Partial neutralization may be required to maintain appropriate interstrand spacing for templates to move around the enzyme complexes during transcription. Genome condensation was not observed either with increased cation concentrations at normal pH or at high pH without ammonium ions. This finding indicates that the observed genome condensation is a synergistic effect of hydroxyl and ammonium ions involving disruption of protein–RNA interactions that perhaps facilitate further charge neutralization and consequent reduction in the interstrand spacing.
Resumo:
The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD provides standard nomenclature and consensus map positions for mouse genes and genetic markers; it provides a curated set of mammalian homology records, user-defined chromosomal maps, experimental data sets and the definitive mouse ‘gene to sequence’ reference set for the research community. The integration and standardization of these data sets facilitates the transition between mouse DNA sequence, gene and phenotype annotations. A recent focus on allele and phenotype representations enhances the ability of MGD to organize and present data for exploring the relationship between genotype and phenotype. This link between the genome and the biology of the mouse is especially important as phenotype information grows from large mutagenesis projects and genotype information grows from large-scale sequencing projects.
Resumo:
The ARKdb genome databases provide comprehensive public repositories for genome mapping data from farmed species and other animals (http://www.thearkdb.org) providing a resource similar in function to that offered by GDB or MGD for human or mouse genome mapping data, respectively. Because we have attempted to build a generic mapping database, the system has wide utility, particularly for those species for which development of a specific resource would be prohibitive. The ARKdb genome database model has been implemented for 10 species to date. These are pig, chicken, sheep, cattle, horse, deer, tilapia, cat, turkey and salmon. Access to the ARKdb databases is effected via the World Wide Web using the ARKdb browser and Anubis map viewer. The information stored includes details of loci, maps, experimental methods and the source references. Links to other information sources such as PubMed and EMBL/GenBank are provided. Responsibility for data entry and curation is shared amongst scientists active in genome research in the species of interest. Mirror sites in the United States are maintained in addition to the central genome server at Roslin.
Resumo:
GOBASE (http://megasun.bch.umontreal.ca/gobase/) is a network-accessible biological database, which is unique in bringing together diverse biological data on organelles with taxonomically broad coverage, and in furnishing data that have been exhaustively verified and completed by experts. So far, we have focused on mitochondrial data: GOBASE contains all published nucleotide and protein sequences encoded by mitochondrial genomes, selected RNA secondary structures of mitochondria-encoded molecules, genetic maps of completely sequenced genomes, taxonomic information for all species whose sequences are present in the database and organismal descriptions of key protistan eukaryotes. All of these data have been integrated and organized in a formal database structure to allow sophisticated biological queries using terms that are inherent in biological concepts. Most importantly, data have been validated, completed, corrected and standardized, a prerequisite of meaningful analysis. In addition, where critical data are lacking, such as genetic maps and RNA secondary structures, they are generated by the GOBASE team and collaborators, and added to the database. The database is implemented in a relational database management system, but features an object-oriented view of the biological data through a Web/Genera-generated World Wide Web interface. Finally, we have developed software for database curation (i.e. data updates, validation and correction), which will be described in some detail in this paper.
Resumo:
The Medicago Genome Initiative (MGI) is a database of EST sequences of the model legume Medicago truncatula. The database is available to the public and has resulted from a collaborative research effort between the Samuel Roberts Noble Foundation and the National Center for Genome Resources to investigate the genome of M.truncatula. MGI is part of the greater integrated Medicago functional genomics program at the Noble Foundation (http://www.noble .org), which is taking a global approach in studying the genetic and biochemical events associated with the growth, development and environmental interactions of this model legume. Our approach will include: large-scale EST sequencing, gene expression profiling, the generation of M.truncatula activation-tagged and promoter trap insertion mutants, high-throughput metabolic profiling, and proteome studies. These multidisciplinary information pools will be interfaced with one another to provide scientists with an integrated, holistic set of tools to address fundamental questions pertaining to legume biology. The public interface to the MGI database can be accessed at http://www.ncgr.org/research/mgi.
Resumo:
We report here that the DNA-dependent protein kinase (DNA-PK) affects the molecular fate of the recombinant adeno-associated virus (rAAV) genome in skeletal muscle. rAAV-human α1-antitrypsin (rAAV-hAAT) vectors were delivered by intramuscular injection to either C57BL/6 (DNA-PKcs+) or C57BL/6-SCID [severe combined immunodeficient (SCID), DNA-PKcs−] mice. In both strains, high levels of transgene expression were sustained for up to 1 year after a single injection. Southern blot analysis showed that rAAV genomes persisted as linear episomes for more than 1 year in SCID mice, whereas only circular episomal forms were observed in the C57BL/6 strain. These results indicate that DNA-PK is involved in the formation of circular rAAV episomes.
Resumo:
Comparisons of codon frequencies of genes to several gene classes are used to characterize highly expressed and alien genes on the Synechocystis PCC6803 genome. The primary gene classes include the ensemble of all genes (average gene), ribosomal protein (RP) genes, translation processing factors (TF) and genes encoding chaperone/degradation proteins (CH). A gene is predicted highly expressed (PHX) if its codon usage is close to that of the RP/TF/CH standards but strongly deviant from the average gene. Putative alien (PA) genes are those for which codon usage is significantly different from all four classes of gene standards. In Synechocystis, 380 genes were identified as PHX. The genes with the highest predicted expression levels include many that encode proteins vital for photosynthesis. Nearly all of the genes of the RP/TF/CH gene classes are PHX. The principal glycolysis enzymes, which may also function in CO2 fixation, are PHX, while none of the genes encoding TCA cycle enzymes are PHX. The PA genes are mostly of unknown function or encode transposases. Several PA genes encode polypeptides that function in lipopolysaccharide biosynthesis. Both PHX and PA genes often form significant clusters (operons). The proteins encoded by PHX and PA genes are described with respect to functional classifications, their organization in the genome and their stoichiometry in multi-subunit complexes.
Resumo:
The placenta contains several types of feto-maternal interfaces where zygote-derived cells interact with maternal cells or maternal blood for the promotion of fetal growth and viability. The genetic factors regulating the interactions between different cell types within feto-maternal interfaces and the relative contributions of the maternal and zygotic genomes are poorly understood. Genomic imprinting, the epigenetic process responsible for parental origin-dependent functional differences between homologous chromosomes, has been proposed to contribute to these events. Previous studies showed that mouse conceptuses with an absence of imprinted differences between the two copies of chromosome 12 (upon paternal inheritance of both copies) die late in gestation and have a variety of defects, including placentomegaly. Here we examined the role of chromosome 12 imprinting in these placentae in more detail. We show that the spatial interactions between different cell types within feto-maternal interfaces are defective and identify abnormal behaviors in both zygote-derived and maternal cells that are attributed to the genome of the zygote but not the mother. These include compromised invasion of the maternal decidualized endometrium and the central maternal artery situated within it by zygote-derived trophoblast, abnormalities in the wall of the central maternal artery, and defects within the zygote-derived cellular layer of the labyrinth, which is in direct contact with maternal blood. These findings demonstrate multiple roles for chromosome 12 imprinting in the placenta that have not previously been associated with imprinting effects. They provide insights into the function of imprinting in placental development and have evolutionary and clinical implications.
Resumo:
Since 1991, the Rice Genome Research Program in Japan has carried out rice genomics, such as large-scale cDNA analysis, construction of a fine-scale restriction fragment length polymorphism map, and physical mapping of the rice genome with yeast artificial chromosome clones. These studies have made a great impact on research into grass genomes and made rice a model plant for other cereal crop research. Starting in 1998, the Rice Genome Research Program will step into a new stage of genomics—that of genome sequencing. This project eventually should reveal all of the genomic sequence information in the rice plant and be an indispensable aid in understanding the genomics of other grass species.
Resumo:
The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.
Resumo:
We have modified the infectious reovirus RNA system so as to generate a reovirus reverse genetics system. The system consists of (i) the plus strands of nine wild-type reovirus genome segments; (ii) transcripts of the genetically modified cDNA form of the tenth genome segment; and (iii) a cell line transformed so as to express the protein normally encoded by the tenth genome segment. In the work described here, we have generated a serotype 3 reovirus into the S2 double-stranded RNA genome segment of which the CAT gene has been cloned. The virus is stable, replicates in cells that have been transformed (so as to express the S2 gene product, protein σ2), and expresses high levels of CAT activity. This technology can be extended to members of the orbivirus and rotavirus genera. This technology provides a powerful system for basic studies of double-stranded RNA virus replication; a nonpathogenic viral vector that replicates to high titers and could be used for clinical applications; and a system for providing nonselectable viral variants (the result of mutations, insertions, and deletions) that could be valuable for the construction of viral vaccine strains against human and animal pathogens.