6 resultados para The Studio Model
em National Center for Biotechnology Information - NCBI
Resumo:
The genetic properties of the non-Mendelian element, [URE3], suggest that it is a prion (infectious protein) form of Ure2p, a mediator of nitrogen regulation in Saccharomyces cerevisiae. Into a ure2Δ strain (necessarily lacking [URE3]), we introduced a plasmid overproducing Ure2p. This induced the frequent “spontaneous generation” of [URE3], with properties identical to the original [URE3]. Altering the translational frame only in the prion-inducing domain of URE2 shows that it is Ure2 protein (and not URE2 RNA) that induces appearance of [URE3]. The proteinase K-resistance of Ure2p is unique to [URE3] strains and is not seen in nitrogen regulation of normal strains. The prion-inducing domain of Ure2p (residues 1–65) can propagate [URE3] in the absence of the C-terminal part of the molecule. In contrast, the C-terminal part of Ure2p cannot be converted to the prion (inactive) form without the prion-inducing domain covalently attached. These experiments support the prion model for [URE3] and extend our understanding of its propagation.
Resumo:
Microorganisms modify rates and mechanisms of chemical and physical weathering and clay growth, thus playing fundamental roles in soil and sediment formation. Because processes in soils are inherently complex and difficult to study, we employ a model based on the lichen–mineral system to identify the fundamental interactions. Fixed carbon released by the photosynthetic symbiont stimulates growth of fungi and other microorganisms. These microorganisms directly or indirectly induce mineral disaggregation, hydration, dissolution, and secondary mineral formation. Model polysaccharides were used to investigate direct mediation of mineral surface reactions by extracellular polymers. Polysaccharides can suppress or enhance rates of chemical weathering by up to three orders of magnitude, depending on the pH, mineral surface structure and composition, and organic functional groups. Mg, Mn, Fe, Al, and Si are redistributed into clays that strongly adsorb ions. Microbes contribute to dissolution of insoluble secondary phosphates, possibly via release of organic acids. These reactions significantly impact soil fertility. Below fungi–mineral interfaces, mineral surfaces are exposed to dissolved metabolic byproducts. Through this indirect process, microorganisms can accelerate mineral dissolution, leading to enhanced porosity and permeability and colonization by microbial communities.
Resumo:
Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.
Resumo:
Xanthene dyes are known to form dimers with spectral characteristics that have been interpreted in terms of exciton theory. A unique aspect of H-type dimers is the fluorescence quenching that accompanies their formation. Using the principles of exciton theory as a guide, a series of protease substrates was synthesized with a xanthene dye on each side of the cleavage site. To bring the attached dyes into spatial proximity to form a dimer, the molecular design included structure determinant regions in the amino acid sequence. In addition, chromophores were chosen such that changes in absorption spectra indicative of exciton splitting were anticipated. Cleavage of the peptides by a protease resulted in disruption of the dimers and indeed significant absorption spectral changes were observed. Furthermore, substrate cleavage was accompanied by at least an order of magnitude increase in fluorescence intensity. This has allowed determination of intracellular elastase activity using a fluorescence microscope equipped with standard optics.
Resumo:
Theoretical advantages of nonparametric logarithm of odds to map polygenic diseases are supported by tests of the beta model that depends on a single logistic parameter and is the only model under which paternal and maternal transmissions to sibs of specified phenotypes are independent. Although it does not precisely describe recurrence risks in monozygous twins, the beta model has greater power to detect family resemblance or linkage than the more general delta model which describes the probability of 0, 1, or 2 alleles identical by descent (ibd) with two parameters. Available data on ibd in sibs are consistent with the beta model, but not with the equally parsimonious but less powerful gamma model that assumes a fixed probability of 1/2 for 1 allele ibd. Additivity of loci on the liability scale is not disproven. A simple equivalence extends the beta model to multipoint analysis.