3 resultados para The Strain

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is known that an E146D site-directed variant of the Azotobacter vinelandii iron protein (Fe protein) is specifically defective in its ability to participate in iron-molybdenum cofactor (FeMoco) insertion. Molybdenum-iron protein (MoFe protein) from the strain expressing the E146D Fe protein is partially (≈45%) FeMoco deficient. The “free” FeMoco that is not inserted accumulates in the cell. We were able to insert this “free” FeMoco into the partially pure FeMoco-deficient MoFe protein. This insertion reaction required crude extract of the ΔnifHDK A. vinelandii strain CA12, Fe protein and MgATP. We used this as an assay to purify a required “insertion” protein. The purified protein was identified as GroEL, based on the molecular mass of its subunit (58.8 kDa), crossreaction with commercially available antibodies raised against E. coli GroEL, and its NH2-terminal polypeptide sequence. The NH2-terminal polypeptide sequence showed identity of up to 84% to GroEL from various organisms. Purified GroEL of A. vinelandii alone or in combination with MgATP and Fe protein did not support the FeMoco insertion into pure FeMoco-deficient MoFe protein, suggesting that there are still other proteins and/or factors missing. By using GroEL-containing extracts from a ΔnifHDK strain of A. vinelandii CA12 along with FeMoco, Fe protein, and MgATP, we were able to supply all required proteins and/or factors and obtained a fully active reconstituted E146D nifH MoFe protein. The involvement of the molecular chaperone GroEL in the insertion of a metal cluster into an apoprotein may have broad implications for the maturation of other metalloenzymes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using taxonomic characters derived from EcoRI restriction endonuclease digestion of genomic DNA and hybridization with a labeled rRNA operon from Escherichia coli, a polymorphic structure of Listeria monocytogenes, characterized by fragments with different frequencies of occurrence, was observed. This structure was expanded by creating predicted patterns through a recursive process of observation, expectation, prediction, and assessment of completeness. This process was applied, in turn, to normalized strain patterns, fragment bands, and positions of EcoRI recognition sites relative to rRNA regions. Analysis of 1346 strains provided observed patterns, fragment sizes, and their frequencies of occurrence in the patterns. Fragment size statistics led to the creation of unobserved combinations of bands, predicted pattern types. The observed fragment bands revealed positions of EcoRI sites relative to rRNA sequences. Each EcoRI site had a frequency of occurrence, and unobserved fragment sizes were postulated on the basis of knowing the restriction site locations. The result of the recursion process applied to the components of the strain data was an extended classification with observed and predicted members.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rpsO mRNA, encoding ribosomal protein S15, is only partly stabilized when the three ribonucleases implicated in its degradation--RNase E, polynucleotide phosphorylase, and RNase II--are inactivated. In the strain deficient for RNase E and 3'-to-5' exoribonucleases, degradation of this mRNA is correlated with the appearance of posttranscriptionally elongated molecules. We report that these elongated mRNAs harbor poly(A) tails, most of which are fused downstream of the 3'-terminal hairpin at the site where transcription terminates. Poly(A) tails are shorter in strains containing 3'-to-5' exoribonucleases. Inactivation of poly(A) polymerase I (pcnB) prevents polyadenylylation and stabilizes the rpsO mRNA if RNase E is inactive. In contrast polyadenylylation does not significantly modify the stability of rpsO mRNA undergoing RNase E-mediated degradation.