9 resultados para The Show Booth

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open time of AcCho-gated ion channels (11 ms) is briefer than that of 5HT-gated ion channels (18 ms). Furthermore, whereas the open time of AcCho channels lengthens with hyperpolarization, that of 5HT channels is decreased. In voltage-clamped oocytes, the apparent affinity of the α7 mutant receptor for 5HT is not modified by the presence of dihydro-β-erythroidine, which acts on the AcCho binding site in a competitive manner. This indicates a noncompetitive action of 5HT on nicotinic acetylcholine receptors. Considered together, our findings show that AcCho gates α7 mutant channels with similar conductance but with different kinetic profile than the channels gated by 5HT, suggesting that the two agonists act on different docking sites. These results will help to understand the crosstalk between cholinergic and serotonergic systems in the central nervous system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The parasitic bacterium Mycoplasma genitalium has a small, reduced genome with close to a basic set of genes. As a first step toward determining the families of protein domains that form the products of these genes, we have used the multiple sequence programs psi-blast and geanfammer to match the sequences of the 467 gene products of M. genitalium to the sequences of the domains that form proteins of known structure [Protein Data Bank (PDB) sequences]. PDB sequences (274) match all of 106 M. genitalium sequences and some parts of another 85; thus, 41% of its total sequences are matched in all or part. The evolutionary relationships of the PDB domains that match M. genitalium are described in the structural classification of proteins (SCOP) database. Using this information, we show that the domains in the matched M. genitalium sequences come from 114 superfamilies and that 58% of them have arisen by gene duplication. This level of duplication is more than twice that found by using pairwise sequence comparisons. The PDB domain matches also describe the domain structure of the matched sequences: just over a quarter contain one domain and the rest have combinations of two or more domains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufour, P. Bogaerts, D. Thinès, A. Goffeau, M. Boutry [1995] J Biol Chem 270: 23828–23837). In the present study we replaced the yeast H+-ATPase with PMA4, an H+-ATPase isoform from the second subfamily. Yeast expressing PMA4 grew at a pH as low as 4.0. This was correlated with a higher acidification of the external medium and an approximately 50% increase of ATPase activity compared with PMA2. Although both PMA2 and PMA4 had a similar pH optimum (6.6–6.8), the profile was different on the alkaline side. At pH 7.2 PMA2 kept more than 80% of the maximal activity, whereas that of PMA4 decreased to less than 40%. Both enzymes were stimulated up to 3-fold by 100 μg/mL lysophosphatidylcholine, but this stimulation vanished at a higher concentration in PMA4. These data demonstrate functional differences between two plant H+-ATPases expressed in the same heterologous host. Characterization of two PMA4 mutants selected to allow yeast growth at pH 3.0 revealed that mutations within the carboxy-terminal region of PMA4 could still improve the enzyme, resulting in better growth of yeast cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genomic clones of two nonspecific lipid-transfer protein genes from a drought-tolerant wild species of tomato (Lycopersicon pennellii Corr.) were isolated using as a probe a drought- and abscisic acid (ABA)-induced cDNA clone (pLE16) from cultivated tomato (Lycopersicon esculentum Mill.). Both genes (LpLtp1 and LpLtp2) were sequenced and their corresponding mRNAs were characterized; they are both interrupted by a single intron at identical positions and predict basic proteins of 114 amino acid residues. Genomic Southern data indicated that these genes are members of a small gene family in Lycopersicon spp. The 3′-untranslated regions from LpLtp1 and LpLtp2, as well as a polymerase chain reaction-amplified 3′-untranslated region from pLE16 (cross-hybridizing to a third gene in L. pennellii, namely LpLtp3), were used as gene-specific probes to describe expression in L. pennellii through northern-blot analyses. All LpLtp genes were exclusively expressed in the aerial tissues of the plant and all were drought and ABA inducible. Each gene had a different pattern of expression in fruit, and LpLtp1 and LpLtp2, unlike LpLtp3, were both primarily developmentally regulated in leaf tissue. Putative ABA-responsive elements were found in the proximal promoter regions of LpLtp1 and LpLtp2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gene encoding tissue-type plasminogen activator (t-PA) is an immediate response gene, downstream from CREB-1 and other constitutively expressed transcription factors, which is induced in the hippocampus during the late phase of long-term potentiation (L-LTP). Mice in which the t-PA gene has been ablated (t-PA-/-) showed no gross anatomical, electrophysiological, sensory, or motor abnormalities but manifest a selective reduction in L-LTP in hippocampal slices in both the Schaffer collateral-CA1 and mossy fiber-CA3 pathways. t-PA-/- mice also exhibit reduced potentiation by cAMP analogs and D1/D5 agonists. By contrast, hippocampal-dependent learning and memory were not affected in these mice, whereas performance was impaired on two-way active avoidance, a striatum-dependent task. These results provide genetic evidence that t-PA is a downstream effector gene important for L-LTP and show that modest impairment of L-LTP in CA1 and CA3 does not result in hippocampus-dependent behavioral phenotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adhesive core of the desmosome is composed of cadherin-like glycoproteins of two families, desmocollins and desmogleins. Three isoforms of each are expressed in a tissue-specific and developmentally regulated pattern. In bovine nasal epidermis, the three desmocollin (Dsc) isoforms are expressed in overlapping domains; Dsc3 expression is strongest in the basal layer, while Dsc2 and Dsc1 are strongly expressed in the suprabasal layers. Herein we have investigated whether different isoforms are assembled into the same or distinct desmosomes by performing double immunogold labeling using isoform-specific antibodies directed against Dsc1 and Dsc3. The results show that individual desmosomes harbor both isoforms in regions where their expression territories overlap. Quantification showed that the ratio of the proteins in each desmosome altered gradually from basal to immediately suprabasal and upper suprabasal layers, labeling for Dsc1 increasing and Dsc3 decreasing. Thus desmosomes are constantly modified as cells move up the epidermis, with continuing turnover of the desmosomal glycoproteins. Statistical analysis of the quantitative data showed a possible relationship between the distributions of the two isoforms. This gradual change in desmosomal composition may constitute a vertical adhesive gradient within the epidermis, having important consequences for cell positioning and differentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

HLA-DR13 has been associated with resistance to two major infectious diseases of humans. To investigate the peptide binding specificity of two HLA-DR13 molecules and the effects of the Gly/Val dimorphism at position 86 of the HLA-DR beta chain on natural peptide ligands, these peptides were acid-eluted from immunoaffinity-purified HLA-DRB1*1301 and -DRB1*1302, molecules that differ only at this position. The eluted peptides were subjected to pool sequencing or individual peptide sequencing by tandem MS or Edman microsequencing. Sequences were obtained for 23 peptides from nine source proteins. Three pool sequences for each allele and the sequences of individual peptides were used to define binding motifs for each allele. Binding specificities varied only at the primary hydrophobic anchor residue, the differences being a preference for the aromatic amino acids Tyr and Phe in DRB1*1302 and a preference for Val in DRB1*1301. Synthetic analogues of the eluted peptides showed allele specificity in their binding to purified HLA-DR, and Ala-substituted peptides were used to identify the primary anchor residues for binding. The failure of some peptides eluted from DRB1*1302 (those that use aromatic amino acids as primary anchors) to bind to DRB1*1301 confirmed the different preferences for peptide anchor residues conferred by the Gly-->Val change at position 86. These data suggest a molecular basis for the differential associations of HLA-DRB1*1301 and DRB1*1302 with resistance to severe malaria and clearance of hepatitis B virus infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium/phospholipid-dependent protein kinase (protein kinase C, PKC) has been suggested to play a role in the sensitivity of gamma-aminobutyrate type A (GABAA) receptors to ethanol. We tested a line of null mutant mice that lacks the gamma isoform of PKC (PKC gamma) to determine the role of this brain-specific isoenzyme in ethanol sensitivity. We found that the mutation reduced the amount of PKC gamma immunoreactivity in cerebellum to undetectable levels without altering the levels of the alpha, beta I, or beta II isoforms of PKC. The mutant mice display reduced sensitivity to the effects of ethanol on loss of righting reflex and hypothermia but show normal responses to flunitrazepam or pentobarbital. Likewise, GABAA receptor function of isolated brain membranes showed that the mutation abolished the action of ethanol but did not alter actions of flunitrazepam or pentobarbital. These studies show the unique interactions of ethanol with GABAA receptors and suggest protein kinase isoenzymes as possible determinants of genetic differences in response to ethanol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During early mammalian embryogenesis, one of the two X chromosomes in somatic cells of the female becomes inactivated through a process that is thought to depend on a unique initiator region, the X-chromosome inactivation center (Xic). The recently characterized Xist sequence (X-inactive-specific transcript) is thought to be a possible candidate for Xic. In mice a further genetic element, the X chromosome-controlling element (Xce), is also known to influence the choice of which of the two X chromosomes is inactivated. We report that a region of the mouse X chromosome lying 15 kb distal to Xist contains several sites that show hypermethylation specifically associated with the active X chromosome. Analysis of this region in various Xce strains has revealed a correlation between the strength of the Xce allele carried and the methylation status of this region. We propose that such a region could be involved in the initial stages of the inactivation process and in particular in the choice of which of the two X chromosomes present in a female cell will be inactivated.