183 resultados para The Folding Wife

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An antibody generated to an α-keto amide containing hapten 1 catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed saturation kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a kcat/Km value of 883 s−1⋅M−1; the reaction was inhibited by the hapten analog 13 (Ki = 3.0 ± 0.4 μM). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten 1 and hapten analog 13. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multidimensional free energy surface for a small fast folding helical protein is explored based on first-principle calculations. The model represents the 46-residue segment from fragment B of staphylococcal protein A. The relationship between collapse and tertiary structure formation, and the order of collapse and secondary structure formation, are investigated. We find that the initial collapse process gives rise to a transition state with about 30% of the native tertiary structure and 50–70% of the native helix content. We also observe two distinct distributions of native helix in this collapsed state (Rg ≈ 12 Å), one with about 20% of the native helical hydrogen bonds, the other with near 70%. The former corresponds to a local minimum. The barrier from this metastable state to the native state is about 2 kBT. In the latter case, folding is essentially a downhill process involving topological assembly. In addition, the order of formation of secondary structure among the three helices is examined. We observe cooperative formation of the secondary structure in helix I and helix II. Secondary structure in helix III starts to form following the formation of certain secondary structure in both helix I and helix II. Comparisons of our results with those from theory and experiment are made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evolutionary process is simulated with a simple spin-glass-like model of proteins to examine the origin of folding ability. At each generation, sequences are randomly mutated and subjected to a simulation of the folding process based on the model. According to the frequency of local configurations at the active sites, sequences are selected and passed to the next generation. After a few hundred generations, a sequence capable of folding globally into a native conformation emerges. Moreover, the selected sequence has a distinct energy minimum and an anisotropic funnel on the energy surface, which are the imperative features for fast folding of proteins. The proposed model reveals that the functional selection on the local configurations leads a sequence to fold globally into a conformation at a faster rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP–heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barnase is one of the few protein models that has been studied extensively for protein folding. Previous studies led to the conclusion that barnase folds through a very stable submillisecond intermediate (≈3 kcal/mol). The structure of this intermediate was characterized intensively by using a protein engineering approach. This intermediate has now been reexamined with three direct and independent methods. (i) Hydrogen exchange experiments show very small protection factors (≈2) for the putative intermediate, indicating a stability of ≈0.0 kcal/mol. (ii) Denaturant-dependent unfolding of the putative intermediate is noncooperative and indicates a stability less than 0.0 kcal/mol. (iii) The logarithm of the unfolding rate constant of native barnase vs. denaturant concentrations is not linear. Together with the measured rate (“I” to N), this nonlinear behavior accounts for almost all of the protein stability, leaving only about 0.3 kcal/mol that could be attributed to the rapidly formed intermediate. Other observations previously interpreted to support the presence of an intermediate are now known to have alternative explanations. These results cast doubts on the previous conclusions on the nature of the early folding state in barnase and therefore should have important implications in understanding the early folding events of barnase and other proteins in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Residual structure in the denatured state of a protein may contain clues about the early events in folding. We have simulated by molecular dynamics the denatured state of barnase, which has been studied by NMR spectroscopy. An ensemble of 104 structures was generated after 2 ns of unfolding and following for a further 2 ns. The ensemble was heterogeneous, but there was nonrandom, residual structure with persistent interactions. Helical structure in the C-terminal portion of helix α1 (residues 13–17) and in helix α2 as well as a turn and nonnative hydrophobic clustering between β3 and β4 were observed, consistent with NMR data. In addition, there were tertiary contacts between residues in α1 and the C-terminal portion of the β-sheet. The simulated structures allow the rudimentary NMR data to be fleshed out. The consistency between simulation and experiment inspires confidence in the methods. A description of the folding pathway of barnase from the denatured to the native state can be constructed by combining the simulation with experimental data from φ value analysis and NMR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experimental and theoretical studies have produced high-resolution descriptions of the native and folding transition states of chymotrypsin inhibitor 2 (CI2). In similar fashion, here we use a combination of NMR experiments and molecular dynamics simulations to examine the conformations populated by CI2 in the denatured state. The denatured state is highly unfolded, but there is some residual native helical structure along with hydrophobic clustering in the center of the chain. The lack of persistent nonnative structure in the denatured state reduces barriers that must be overcome, leading to fast folding through a nucleation–condensation mechanism. With the characterization of the denatured state, we have now completed our description of the folding/unfolding pathway of CI2 at atomic resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In native apomyoglobin, His-24 cannot be protonated, although at pH 4 the native protein forms a molten globule folding intermediate in which the histidine residues are readily protonated. The inability to protonate His-24 in the native protein dramatically affects the unfolding/refolding kinetics, as demonstrated by simulations for a simple model. Kinetic data for wild type and for a mutant lacking His-24 are analyzed. The pKa values of histidine residues in native apomyoglobin are known from earlier studies, and the average histidine pKa in the molten globule is determined from the pH dependence of the equilibrium between the native and molten globule forms. Analysis of the pH-dependent unfolding/refolding kinetics reveals that the average pKa of the histidine residues, including His-24, is closely similar in the folding transition state to the value found in the molten globule intermediate. Consequently, protonation of His-24 is not a barrier to refolding of the molten globule to the native protein. Instead, the normal pKa of His-24 in the transition state, coupled with its inaccessibility in the native state, promotes fast unfolding at low pH. The analysis of the wild-type results is confirmed and extended by using the wild-type parameters to fit the unfolding kinetics of a mutant lacking His-24.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The empirical observation that homologous proteins fold to similar structures is used to enhance the capabilities of an ab initio algorithm to predict protein conformations. A penalty function that forces homologous proteins to look alike is added to the potential and is employed in the coupled energy optimization of several homologous proteins. Significant improvement in the quality of the computed structures (as compared with the computational folding of a single protein) is demonstrated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review, we attempt to summarize, in a critical manner, what is currently known about the processes of condensation and decondensation of chromatin fibers. We begin with a critical analysis of the possible mechanisms for condensation, considering both old and new evidence as to whether the linker DNA between nucleosomes bends or remains straight in the condensed structure. Concluding that the preponderance of evidence is for straight linkers, we ask what other fundamental process might allow condensation, and argue that there is evidence for linker histone-induced contraction of the internucleosome angle, as salt concentration is raised toward physiological levels. We also ask how certain specific regions of chromatin can become decondensed, even at physiological salt concentration, to allow transcription. We consider linker histone depletion and acetylation of the core histone tails, as possible mechanisms. On the basis of recent evidence, we suggest a unified model linking targeted acetylation of specific genomic regions to linker histone depletion, with unfolding of the condensed fiber as a consequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The folding mechanism of a 125-bead heteropolymer model for proteins is investigated with Monte Carlo simulations on a cubic lattice. Sequences that do and do not fold in a reasonable time are compared. The overall folding behavior is found to be more complex than that of models for smaller proteins. Folding begins with a rapid collapse followed by a slow search through the semi-compact globule for a sequence-dependent stable core with about 30 out of 176 native contacts which serves as the transition state for folding to a near-native structure. Efficient search for the core is dependent on structural features of the native state. Sequences that fold have large amounts of stable, cooperative structure that is accessible through short-range initiation sites, such as those in anti-parallel sheets connected by turns. Before folding is completed, the system can encounter a second bottleneck, involving the condensation and rearrangement of surface residues. Overly stable local structure of the surface residues slows this stage of the folding process. The relation of the results from the 125-mer model studies to the folding of real proteins is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-cell adhesion in zonula adherens and desmosomal junctions is mediated by cadherins, and recent crystal structures of the first domain from murine N-cadherin provide a plausible molecular basis for this adhesive action. A structure-based sequence analysis of this adhesive domain indicates that its fold is common to all extracellular cadherin domains. The cadherin folding topology is also shown to be similar to immunoglobulin-like domains and to other Greek-key beta-sandwich structures, as diverse as domains from plant cytochromes, bacterial cellulases, and eukaryotic transcription factors. Sequence similarities between cadherins and these other molecules are very low, however, and intron patterns are also different. On balance, independent origins for a favorable folding topology seem more likely than evolutionary divergence from an ancestor common to cadherins and immunoglobulins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the pathway of folding of barnase bound to GroEL to resolve the controversy of whether proteins can fold while bound to chaperonins (GroEL or Cpn60) or fold only after their release into solution. Four phases in the folding were detected by rapid-reaction kinetic measurements of the intrinsic fluorescence of both wild type and barnase mutants. The phases were assigned from their rate laws, sensitivity to mutations, and correspondence to regain of catalytic activity. At high ratios of denatured barnase to GroEL, 4 mol of barnase rapidly bind per 14-mer of GroEL. At high ratios of GroEL to barnase, 1 mol of barnase binds with a rate constant of 3.5 x 10(7) s-1.M-1. This molecule then refolds with a low rate constant that changes on mutation in parallel with the rate constant for the folding in solution. This rate constant corresponds to the regain of the overall catalytic activity of barnase and increases 15-fold on the addition of ATP to a physiologically relevant value of approximately 0.4 s-1. The multiply bound molecules of barnase that are present at high ratios of GroEL to barnase fold with a rate constant that is also sensitive to mutation but is 10 times higher. If the 110-residue barnase can fold when bound to GroEL and many moles can bind simultaneously, then smaller parts of large proteins should be able to fold while bound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anomalous temperature dependence of protein folding has received considerable attention. Here we show that the temperature dependence of the folding of protein L becomes extremely simple when the effects of temperature on protein stability are corrected for; the logarithm of the folding rate is a linear function of 1/T on constant stability contours in the temperature–denaturant plane. This convincingly demonstrates that the anomalous temperature dependence of folding derives from the temperature dependence of the interactions that stabilize proteins, rather than from the super Arrhenius temperature dependence predicted for the configurational diffusion constant on a rough energy landscape. However, because of the limited temperature range accessible to experiment, the results do not rule out models with higher order temperature dependences. The significance of the slope of the stability-corrected Arrhenius plots is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small, single-domain proteins typically fold via a compact transition-state ensemble in a process well fitted by a simple, two-state model. To characterize the rate-limiting conformational changes that underlie two-state folding, we have investigated experimentally the effects of changing solvent viscosity on the refolding of the IgG binding domain of protein L. In conjunction with numerical simulations, our results indicate that the rate-limiting conformational changes of the folding of this domain are strongly coupled to solvent viscosity and lack any significant “internal friction” arising from intrachain collisions. When compared with the previously determined solvent viscosity dependencies of other, more restricted conformational changes, our results suggest that the rate-limiting folding transition involves conformational fluctuations that displace considerable amounts of solvent. Reconciling evidence that the folding transition state ensemble is comprised of highly collapsed species with these and similar, previously reported results should provide a significant constraint for theoretical models of the folding process.