8 resultados para Textures of Optical Flow

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical problem of thermal explosion is modified so that the chemically active gas is not at rest but is flowing in a long cylindrical pipe. Up to a certain section the heat-conducting walls of the pipe are held at low temperature so that the reaction rate is small and there is no heat release; at that section the ambient temperature is increased and an exothermic reaction begins. The question is whether a slow reaction regime will be established or a thermal explosion will occur. The mathematical formulation of the problem is presented. It is shown that when the pipe radius is larger than a critical value, the solution of the new problem exists only up to a certain distance along the axis. The critical radius is determined by conditions in a problem with a uniform axial temperature. The loss of existence is interpreted as a thermal explosion; the critical distance is the safe reactor’s length. Both laminar and developed turbulent flow regimes are considered. In a computational experiment the loss of the existence appears as a divergence of a numerical procedure; numerical calculations reveal asymptotic scaling laws with simple powers for the critical distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cultured renal epithelium (MDCK) and used to determine the velocity of the fluid flow across the tight junction. The flow velocity within the lateral intercellular spaces fell to near zero adjacent to the tight junction, showing that significant transjunctional flow did not occur, even when transepithelial fluid movement was augmented by imposition of osmotic gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea urchin coelomocytes represent an excellent experimental model system for studying retrograde flow. Their extreme flatness allows for excellent microscopic visualization. Their discoid shape provides a radially symmetric geometry, which simplifies analysis of the flow pattern. Finally, the nonmotile nature of the cells allows for the retrograde flow to be analyzed in the absence of cell translocation. In this study we have begun an analysis of the retrograde flow mechanism by characterizing its kinetic and structural properties. The supramolecular organization of actin and myosin II was investigated using light and electron microscopic methods. Light microscopic immunolocalization was performed with anti-actin and anti-sea urchin egg myosin II antibodies, whereas transmission electron microscopy was performed on platinum replicas of critical point-dried and rotary-shadowed cytoskeletons. Coelomocytes contain a dense cortical actin network, which feeds into an extensive array of radial bundles in the interior. These actin bundles terminate in a perinuclear region, which contains a ring of myosin II bipolar minifilaments. Retrograde flow was arrested either by interfering with actin polymerization or by inhibiting myosin II function, but the pathway by which the flow was blocked was different for the two kinds of inhibitory treatments. Inhibition of actin polymerization with cytochalasin D caused the actin cytoskeleton to separate from the cell margin and undergo a finite retrograde retraction. In contrast, inhibition of myosin II function either with the wide-spectrum protein kinase inhibitor staurosporine or the myosin light chain kinase–specific inhibitor KT5926 stopped flow in the cell center, whereas normal retrograde flow continued at the cell periphery. These differential results suggest that the mechanism of retrograde flow has two, spatially segregated components. We propose a “push–pull” mechanism in which actin polymerization drives flow at the cell periphery, whereas myosin II provides the tension on the actin cytoskeleton necessary for flow in the cell interior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μm below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown UV vision and markings to be important in vertebrates, particularly birds, where behavioral experiments have demonstrated its potential importance in sexual selection. However, there has been no genetic evidence that UV markings determine patterns of evolution among natural populations. Here we report molecular evidence that UV markings are associated with the pattern of gene flow in the Tenerife lizard (Gallotia galloti). This species has vicariance-induced, approximate east–west lineages in Tenerife closely congruent with the primary lineages of the sympatric gecko species. Against expectations, these molecular phylogeographic lineages (representing geological history) and isolation-by-distance do not appear to influence gene flow. Sexually mature males from populations either side of a latitudinal ecotone have different UV markings and gene flow appears to be linked to this difference in UV markings. It may be that these groups with different UV sexual markings mate assortatively, restricting the gene flow between them. This has implications for debate on the relative importance of vicariance and biotopes in influencing biodiversity, with this evidence supporting the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near infrared diffuse optical spectroscopy and diffuse optical imaging are promising methods that eventually may enhance or replace existing technologies for breast cancer screening and diagnosis. These techniques are based on highly sensitive, quantitative measurements of optical and functional contrast between healthy and diseased tissue. In this study, we examine whether changes in breast physiology caused by exogenous hormones, aging, and fluctuations during the menstrual cycle result in significant alterations in breast tissue optical contrast. A noninvasive quantitative diffuse optical spectroscopy technique, frequency-domain photon migration, was used. Measurements were performed on 14 volunteer subjects by using a hand-held probe. Intrinsic tissue absorption and reduced scattering parameters were calculated from frequency-domain photon migration data. Wavelength-dependent absorption (at 674, 803, 849, and 956 nm) was used to determine tissue concentration of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, tissue hemoglobin oxygen saturation, and bulk water content. Results show significant and dramatic differences in optical properties between menopausal states. Average premenopausal intrinsic tissue absorption and reduced scattering values at each wavelength are 2.5- to 3-fold higher and 16–28% greater, respectively, than absorption and scattering for postmenopausal subjects. Absorption and scattering properties for women using hormone replacement therapy are intermediate between premenopausal and postmenopausal populations. Physiological properties show differences in mean total hemoglobin (7.0 μM, 11.8 μM, and 19.2 μM) and water concentration relative to pure water (10.9%, 15.3%, and 27.3%) for postmenopausal, hormone replacement therapy, and premenopausal subjects, respectively. Because of their unique, quantitative information content, diffuse optical methods may play an important role in breast diagnostics and improving our understanding of breast disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution.