6 resultados para Terrestrial exoplanets
em National Center for Biotechnology Information - NCBI
Resumo:
A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.
Resumo:
Predators of herbivorous animals can affect plant populations by altering herbivore density, behavior, or both. To test whether the indirect effect of predators on plants arises from density or behavioral responses in a herbivore population, we experimentally examined the dynamics of terrestrial food chains comprised of old field plants, leaf-chewing grasshoppers, and spider predators in Northeast Connecticut. To separate the effects of predators on herbivore density from the effects on herbivore behavior, we created two classes of spiders: (i) risk spiders that had their feeding mouth parts glued to render them incapable of killing prey and (ii) predator spiders that remained unmanipulated. We found that the effect of predators on plants resulted from predator-induced changes in herbivore behavior (shifts in activity time and diet selection) rather than from predator-induced changes in grasshopper density. Neither predator nor risk spiders had a significant effect on grasshopper density relative to a control. This demonstrates that the behavioral response of prey to predators can have a strong impact on the dynamics of terrestrial food chains. The results make a compelling case to examine behavioral as well as density effects in theoretical and empirical research on food chain dynamics.
Resumo:
Two independent multidisciplinary studies of climatic change during the glacial–Holocene transition (ca. 14,000–9,000 calendar yr B.P.) from Norway and Switzerland have assessed organism responses to the rapid climatic changes and made quantitative temperature reconstructions with modern calibration data sets (transfer functions). Chronology at Kråkenes, western Norway, was derived from calibration of a high-resolution series of 14C dates. Chronologies at Gerzensee and Leysin, Switzerland, were derived by comparison of δ18O in lake carbonates with the δ18O record from the Greenland Ice Core Project. Both studies demonstrate the sensitivity of terrestrial and aquatic organisms to rapid temperature changes and their value for quantitative reconstruction of the magnitudes and rates of the climatic changes. The rates in these two terrestrial records are comparable to those in Greenland ice cores, but the actual temperatures inferred apply to the terrestrial environments of the two regions.
Resumo:
Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation “equilibrate,” but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.
The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.
Resumo:
Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts.
Resumo:
Some islands in the Gulf of California support very high densities of spiders. Spider density is negatively correlated with island size; many small islands support 50-200 spiders per m3 of cactus. Energy for these spiders comes primarily from the ocean and not from in situ productivity by land plants. We explicitly connect the marine and terrestrial systems to show that insular food webs represent one endpoint of the marine web. We describe two conduits for marine energy entering these islands: shore drift and seabird colonies. Both conduits are related to island area, having a much stronger effect on smaller islands. This asymmetric effect helps to explain the exceptionally high spider densities on small islands. Although productivity sets the maximal potential densities, predation (by scorpions) limits realized spider abundance. Thus, prey availability and predation act in concert to set insular spider abundance.