9 resultados para Temporal information
em National Center for Biotechnology Information - NCBI
Resumo:
Hippocampal slices are used to show that, as a temporal input pattern of activity flows through a neuronal layer, a temporal-to-spatial transformation takes place. That is, neurons can respond selectively to the first or second of a pair of input pulses, thus transforming different temporal patterns of activity into the activity of different neurons. This is demonstrated using associative long-term potentiation of polysynaptic CA1 responses as an activity-dependent marker: by depolarizing a postsynaptic CA1 neuron exclusively with the first or second of a pair of pulses from the dentate gyrus, it is possible to “tag” different subpopulations of CA3 neurons. This technique allows sampling of a population of neurons without recording simultaneously from multiple neurons. Furthermore, it reflects a biologically plausible mechanism by which single neurons may develop selective responses to time-varying stimuli and permits the induction of context-sensitive synaptic plasticity. These experimental results support the view that networks of neurons are intrinsically able to process temporal information and that it is not necessary to invoke the existence of internal clocks or delay lines for temporal processing on the time scale of tens to hundreds of milliseconds.
Resumo:
The endogenous clock that drives circadian rhythms is thought to communicate temporal information within the cell via cycling downstream transcripts. A transcript encoding a glycine-rich RNA-binding protein, Atgrp7, in Arabidopsis thaliana undergoes circadian oscillations with peak levels in the evening. The AtGRP7 protein also cycles with a time delay so that Atgrp7 transcript levels decline when the AtGRP7 protein accumulates to high levels. After AtGRP7 protein concentration has fallen to trough levels, Atgrp7 transcript starts to reaccumulate. Overexpression of AtGRP7 in transgenic Arabidopsis plants severely depresses cycling of the endogenous Atgrp7 transcript. These data establish both transcript and protein as components of a negative feedback circuit capable of generating a stable oscillation. AtGRP7 overexpression also depresses the oscillation of the circadian-regulated transcript encoding the related RNA-binding protein AtGRP8 but does not affect the oscillation of transcripts such as cab or catalase mRNAs. We propose that the AtGRP7 autoregulatory loop represents a “slave” oscillator in Arabidopsis that receives temporal information from a central “master” oscillator, conserves the rhythmicity by negative feedback, and transduces it to the output pathway by regulating a subset of clock-controlled transcripts.
Resumo:
Participation of two medial temporal lobe structures, the hippocampal region and the amygdala, in long-term declarative memory encoding was examined by using positron emission tomography of regional cerebral glucose. Positron emission tomography scanning was performed in eight healthy subjects listening passively to a repeated sequence of unrelated words. Memory for the words was assessed 24 hr later with an incidental free recall test. The percentage of words freely recalled then was correlated with glucose activity during encoding. The results revealed a striking correlation (r = 0.91, P < 0.001) between activity of the left hippocampal region (centered on the dorsal parahippocampal gyrus) and word recall. No correlation was found between activity of either the left or right amygdala and recall. The findings provide evidence for hippocampal involvement in long-term declarative memory encoding and for the view that the amygdala is not involved with declarative memory formation for nonemotional material.
Resumo:
Little is known about the specific functional contribution of the human orbitofrontal cortex with regard to memory processing, although there is strong evidence from lesion studies in monkeys that it may play an important role. The present investigation measured changes in regional cerebral blood flow with positron emission tomography in normal human subjects who were instructed to commit to memory abstract visual patterns. The results indicated that the rostral orbitofrontal region (area 11), which is primarily linked with the anterior medial temporal limbic region and lateral prefrontal cortical areas, is involved in the process of encoding of new information.
Resumo:
We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.
Resumo:
Knowledge of the stage composition and the temporal dynamics of human cognitive operations is critical for building theories of higher mental activity. This information has been difficult to acquire, even with different combinations of techniques such as refined behavioral testing, electrical recording/interference, and metabolic imaging studies. Verbal object comprehension was studied herein in a single individual, by using three tasks (object naming, auditory word comprehension, and visual word comprehension), two languages (English and Farsi), and four techniques (stimulus manipulation, direct cortical electrical interference, electrocorticography, and a variation of the technique of direct cortical electrical interference to produce time-delimited effects, called timeslicing), in a subject in whom indwelling subdural electrode arrays had been placed for clinical purposes. Electrical interference at a pair of electrodes on the left lateral occipitotemporal gyrus interfered with naming in both languages and with comprehension in the language tested (English). The naming and comprehension deficit resulted from interference with processing of verbal object meaning. Electrocorticography indices of cortical activation at this site during naming started 250–300 msec after visual stimulus presentation. By using the timeslicing technique, which varies the onset of electrical interference relative to the behavioral task, we found that completion of processing for verbal object meaning varied from 450 to 750 msec after current onset. This variability was found to be a function of the subject’s familiarity with the objects.
Resumo:
To investigate the types of memory traces recovered by the medial temporal lobe (MTL), neural activity during veridical and illusory recognition was measured with the use of functional MRI (fMRI). Twelve healthy young adults watched a videotape segment in which two speakers alternatively presented lists of associated words, and then the subjects performed a recognition test including words presented in the study lists (True items), new words closely related to studied words (False items), and new unrelated words (New items). The main finding was a dissociation between two MTL regions: whereas the hippocampus was similarly activated for True and False items, suggesting the recovery of semantic information, the parahippocampal gyrus was more activated for True than for False items, suggesting the recovery of perceptual information. The study also yielded a dissociation between two prefrontal cortex (PFC) regions: whereas bilateral dorsolateral PFC was more activated for True and False items than for New items, possibly reflecting monitoring of retrieved information, left ventrolateral PFC was more activated for New than for True and False items, possibly reflecting semantic processing. Precuneus and lateral parietal regions were more activated for True and False than for New items. Orbitofrontal cortex and cerebellar regions were more activated for False than for True items. In conclusion, the results suggest that activity in anterior MTL regions does not distinguish True from False, whereas activity in posterior MTL regions does.
Resumo:
Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.
Resumo:
Neurons in the songbird forebrain area HVc (hyperstriatum ventrale pars caudale or high vocal center) are sensitive to the temporal structure of the bird's own song and are capable of integrating auditory information over a period of several hundred milliseconds. Extracellular studies have shown that the responses of some HVc neurons depend on the combination and temporal order of syllables from the bird's own song, but little is known about the mechanisms underlying these response properties. To investigate these mechanisms, we recorded intracellular responses to a set of auditory stimuli designed to assess the degree of dependence of the responses on temporal context. This report provides evidence that HVc neurons encode information about temporal structure by using a variety of mechanisms including syllable-specific inhibition, excitatory postsynaptic potentials with a range of different time courses, and burst-firing nonlinearity. The data suggest that the sensitivity of HVc neurons to temporal combinations of syllables results from the interactions of several cells and does not arise in a single step from afferent inputs alone.