19 resultados para Tchebycheff polynomials of the first kind

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has long been hypothesized that ORF1 protein functions to bind LINE-1 (L1) RNA during retrotransposition. Cofractionation of ORF1 protein and L1 RNA in extracts from both mouse and human embryonal carcinoma cells indicated that ORF1 protein binds L1 RNA, forming a ribonucleoprotein particle. Based on UV crosslinking and electrophoretic mobility-shift assays using purified components, we demonstrate here that the ORF1 protein encoded by mouse L1 binds nucleic acids with a strong preference for RNA and other single-stranded nucleic acids. Furthermore, multiple copies of ORF1 protein appear to bind single-stranded nucleic acid in a manner suggesting positive cooperativity; such binding characteristics are likely to be facilitated by the protein–protein interactions detected among molecules of ORF1 polypeptide by coimmunoprecipitation. These observations are consistent with the formation of ribonucleoprotein particles containing L1 RNA and ORF1 protein and provide additional evidence for the role of ORF1 protein during retrotransposition of L1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation of red phlobaphene pigments in sorghum grain pericarp is under the control of the Y gene. A mutable allele of Y, designated as y-cs (y-candystripe), produces a variegated pericarp phenotype. Using probes from the maize p1 gene that cross-hybridize with the sorghum Y gene, we isolated the y-cs allele containing a large insertion element. Our results show that the Y gene is a member of the MYB-transcription factor family. The insertion element, named Candystripe1 (Cs1), is present in the second intron of the Y gene and shares features of the CACTA superfamily of transposons. Cs1 is 23,018 bp in size and is bordered by 20-bp terminal inverted repeat sequences. It generated a 3-bp target site duplication upon insertion within the Y gene and excised from y-cs, leaving a 2-bp footprint in two cases analyzed. Reinsertion of the excised copy of Cs1 was identified by Southern hybridization in the genome of each of seven red pericarp revertant lines tested. Cs1 is the first active transposable element isolated from sorghum. Our analysis suggests that Cs1-homologous sequences are present in low copy number in sorghum and other grasses, including sudangrass, maize, rice, teosinte, and sugarcane. The low copy number and high transposition frequency of Cs1 imply that this transposon could prove to be an efficient gene isolation tool in sorghum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many marine algae produce 3-dimethylsulfoniopropionate (DMSP), a potent osmoprotective compound whose degradation product dimethylsulfide plays a central role in the biogeochemical S cycle. Algae are known to synthesize DMSP via the four-step pathway, l-Met → 4-methylthio-2-oxobutyrate → 4-methylthio-2-hydroxybutyrate → 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) → DMSP. Substrate-specific enzymes catalyzing the first three steps in this pathway were detected and partially characterized in cell-free extracts of the chlorophyte alga Enteromorpha intestinalis. The first is a 2-oxoglutarate-dependent aminotransferase, the second an NADPH-linked reductase, and the third an S-adenosylmethionine-dependent methyltransferase. Sensitive radiometric assays were developed for these enzymes, and used to show that their activities are high enough to account for the estimated in vivo flux from Met to DMSP. The activities of these enzymes in other DMSP-rich chlorophyte algae were at least as high as those in E. intestinalis, but were ≥20-fold lower in algae without DMSP. The reductase and methyltransferase were specific for the d-enantiomer of 4-methylthio-2-hydroxybutyrate in vitro, and both the methyltransferase step and the step(s) converting DMSHB to DMSP were shown to prefer d-enantiomers in vivo. The intermediate DMSHB was shown to act as an osmoprotectant, which indicates that the first three steps of the DMSP synthesis pathway may be sufficient to confer osmotolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mos is an upstream activator of mitogen-activated protein kinase (MAPK) and, in mouse oocytes, is responsible for metaphase II arrest. This activity has been likened to its function in Xenopus oocytes as a component of cytostatic factor. Thus, Mos-deficient female mice (MOS-/-) are less fertile and oocytes derived from these animals fail to arrest at metaphase II and undergo parthenogenetic activation [Colledge, W. H., Carlton, M. B. L., Udy, C. B. & Evans, M. J. (1994) Nature (London) 370, 65-68 and Hashimoto, N., Watanabe, N., Furuta. Y., Tamemoto, B., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y. & Aizawa, S. (1994) Nature (London) 370, 68-71]. Here we show that maturing MOS-/- oocytes fail to activate MAPK throughout meiosis, while p34cdc2 kinase activity is normal until late in metaphase II when it decreases prematurely. Phenotypically, the first meiotic division of MOS-/- oocytes frequently resembles mitotic cleavage or produces an abnormally large polar body. In these oocytes, the spindle shape is altered and the spindle fails to translocate to the cortex, leading to the establishment of an altered cleavage plane. Moreover, the first polar body persists instead of degrading and sometimes undergoes an additional cleavage, thereby providing conditions for parthenogenesis. These studies identify meiotic spindle formation and programmed degradation of the first polar body as new and important roles for the Mos/MAPK pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the molecular cloning of the first beta-1,3 glucanase from animal tissue. Three peptide sequences were obtained from beta-1,3 glucanase that had been purified from eggs of the sea urchin Strongylocentrotus purpuratus and the gene was cloned by PCR using oligonucleotides deduced from the peptide sequences. The full-length cDNA shows a predicted enzyme structure of 499 aa with a hydrophobic signal sequence. A 3.2-kb message is present in eggs, during early embryogenesis, and in adult gut tissue. A polyclonal antibody to the native 68-kDa enzyme recognizes a single band during early embryogenesis that reappears in the adult gut, and recognizes a 57-kDa fusion protein made from a full-length cDNA clone for beta-1,3 glucanase. The identity of this molecule as beta-1,3 glucanase is confirmed by sequence homology, by the presence of all three peptide sequences in the deduced amino acid sequence, and by the recognition of the bacterial fusion protein by the antibody directed against the native enzyme. Data base searches show significant homology at the amino acid level to beta-1,3 glucanases from two species of bacteria and a clotting factor from the horseshoe crab. The homology with the bacteria is centered in a 304-aa region in which there are seven scattered regions of high homology between the four divergent species. These four species were also found to have two homologous regions in common with more distantly related plant, fungal, and bacterial proteins. A global phylogeny based on these regions strongly suggests that the glucanases are a very ancient family of genes. In particular, there is an especially deep split within genes taken from the bacterial genus Bacillus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The x-ray crystallographic structure of the photosynthetic reaction center (RC) has proven critical in understanding biological electron transfer processes. By contrast, understanding of intraprotein proton transfer is easily lost in the immense richness of the details. In the RC of Rhodobacter (Rb.) sphaeroides, the secondary quinone (QB) is surrounded by amino acid residues of the L subunit and some buried water molecules, with M- and H-subunit residues also close by. The effects of site-directed mutagenesis upon RC turnover and quinone function have implicated several L-subunit residues in proton delivery to QB, although some species differences exist. In wild-type Rb. sphaeroides, Glu L212 and Asp L213 represent an inner shell of residues of particular importance in proton transfer to QB. Asp L213 is crucial for delivery of the first proton, coupled to transfer of the second electron, while Glu L212, possibly together with Asp L213, is necessary for delivery of the second proton, after the second electron transfer. We report here the first study, by site-directed mutagenesis, of the role of the H subunit in QB function. Glu H173, one of a cluster of strongly interacting residues near QB, including Asp L213, was altered to Gln. In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant. However, the first electron transfer equilibrium, QA-QB <==> QAQB-, was decreased, which is opposite to the effect of the Asp L213 --> Asn mutation. These major disruptions of events coupled to proton delivery to QB were largely reversed by the addition of azide (N3-). The results support a major role for electrostatic interactions between charged groups in determining the protonation state of certain entities, thereby controlling the rate of the second electron transfer. It is suggested that the essential electrostatic effect may be to "potentiate" proton transfer activity by raising the pK of functional entities that actually transfer protons in a coupled fashion with the second electron transfer. Candidates include buried water (H3O+) and Ser L223 (serine-OH2+), which is very close to the O5 carbonyl of the quinone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cosmids from the 1A3–1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila Numb is a membrane associated protein of 557 amino acids (aa) that localizes asymmetrically into a cortical crescent in mitotic neural precursor cells and segregates into one of the daughter cells, where it is required for correct cell fate specification. We demonstrate here that asymmetric localization but not membrane localization of Numb in Drosophila embryos is inhibited by latrunculin A, an inhibitor of actin assembly. We also show that deletion of either the first 41 aa or aa 41–118 of Numb eliminates both localization to the cell membrane and asymmetric localization during mitosis, whereas C-terminal deletions or deletions of central portions of Numb do not affect its subcellular localization. Fusion of the first 76 or the first 119 aa of Numb to β-galactosidase results in a fusion protein that localizes to the cell membrane, but fails to localize asymmetrically during mitosis. In contrast, a fusion protein containing the first 227 aa of Numb and β-galactosidase localizes asymmetrically during mitosis and segregates into the same daughter cell as the endogenous Numb protein, demonstrating that the first 227 aa of the Numb protein are sufficient for asymmetric localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We showed previously that substitution of the first residue of the influenza hemagglutinin (HA) fusion peptide Gly1 with Glu abolishes fusion activity. In the present study we asked whether this striking phenotype was due to the charge or side-chain volume of the substituted Glu. To do this we generated and characterized six mutants with substitutions at position 1: Gly1 to Ala, Ser, Val, Glu, Gln, or Lys. We found the following. All mutants were expressed at the cell surface, could be cleaved from the precursor (HA0) to the fusion permissive form (HA1-S-S-HA2), bound antibodies against the major antigenic site, bound red blood cells, and changed conformation at low pH. Only Gly, Ala, and Ser supported lipid mixing during fusion with red blood cells. Only Gly and Ala supported content mixing. Ser HA, therefore, displayed a hemifusion phenotype. The hemifusion phenotype of Ser HA was confirmed by electrophysiological studies. Our findings indicate that the first residue of the HA fusion peptide must be small (e.g., Gly, Ala, or Ser) to promote lipid mixing and must be small and apolar (e.g., Gly or Ala) to support both lipid and content mixing. The finding that Val HA displays no fusion activity underscores the idea that hydrophobicity is not the sole factor dictating fusion peptide function. The surprising finding that Ser HA displays hemifusion suggests that the HA ectodomain functions not only in the first stage of fusion, lipid mixing, but also, either directly or indirectly, in the second stage of fusion, content mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although extensively studied biochemically, members of the Protein 4.1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis of coracle, one of the first for a member of the Protein 4.1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphic coracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical–basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulatory domain of phenylalanine hydroxylase (PAH, EC 1.14.16.1) consists of more than 100 amino acids at the N terminus, the removal of which significantly activates the enzyme. To study the regulatory properties controlled by the N terminus, a series of truncations and site-specific mutations were made in this region of rat PAH. These enzymes were expressed highly in Escherichia coli and purified through a pterin-conjugated Sepharose affinity column. The removal of the first 26 amino acids of the N terminus increased the activity by about 20-fold, but removal of the first 15 amino acids increased the activity by only 2-fold. Replacing serine-29 of rat PAH with cysteine from the same site of human PAH increased the activity by more than 4-fold. Mutation of serine to other amino acids with varying side chains: alanine, methionine, leucine, aspartic acid, asparagine, and arginine also resulted in significant activation, indicating a serine-specific inhibitory effect. But these site-specific mutants showed 30–40% lower activity when assayed with 6-methyl-5,6,7,8-tetrahydropterin. Stimulation of hydroxylase activity by preincubation of the enzyme with phenylalanine was inversely proportional to the activation state of all these mutants. Combined with recent crystal structures of PAH [Kobe, B. et al. (1999) Nat. Struct. Biol. 6, 442–448; and Erlandsen, H., Bjorgo, E., Flatmark, T. & Stevens, R. C. (2000) Biochemistry 39, 2208–2217], these data suggest that residues 16–26 have a controlling regulatory effect on the activity by interaction with the dihydroxypropyl side chain of (6R)-5,6,7,8-tetrahydrobiopterin. The serine/cysteine switch explains the difference in regulatory properties between human and rat PAH. The N terminus as a whole is important for maintaining rat PAH in an optimum catalytic conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primer extension and RACE (rapid amplification of cDNA ends) assays were used to identify and sequence the 5' terminus of mouse ob mRNA. This sequence was used to obtain a recombinant bacteriophage containing the first exon of the encoding gene. DNA sequence analysis of the region immediately upstream of the first exon of the mouse ob gene revealed DNA sequences corresponding to presumptive cis-regulatory elements. A canonical TATA box was observed 30-34 base pairs upstream from the start site of transcription and a putative binding site for members of the C/EBP family of transcription factors was identified immediately upstream from the TATA box. Nuclear extracts prepared from primary adipocytes contained a DNA binding activity capable of avid and specific interaction with the putative C/EBP response element; antibodies to C/EBP alpha neutralized the DNA binding activity present in adipocyte nuclear extracts. When linked to a firefly luciferase reporter and transfected into primary adipocytes, the presumptive promoter of the mouse ob gene facilitated luciferase expression. When transfected into HepG2 cells, which lack C/EBP alpha, the mouse ob promoter was only weakly active. Supplementation of C/EBP alpha by cotransfection with a C/EBP alpha expression vector markedly stimulated luciferase expression. Finally, an ob promoter variant mutated at the C/EBP response element was inactive in both primary adipocytes and HepG2 cells. These observations provide evidence for identification of a functional promoter capable of directing expression of the mouse ob gene.