25 resultados para Targets (Shooting)

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms that cause aging are not well understood. The oxidative stress hypothesis proposes that the changes associated with aging are a consequence of random oxidative damage to biomolecules. We hypothesized that oxidation of specific proteins is critical in controlling the rate of the aging process. Utilizing an immunochemical probe for oxidatively modified proteins, we show that mitochondrial aconitase, an enzyme in the citric acid cycle, is a specific target during aging of the housefly. The oxidative damage detected immunochemically was paralleled by a loss of catalytic activity of aconitase, an enzyme activity that is critical in energy metabolism. Experimental manipulations which decrease aconitase activity should therefore cause a decrease in life-span. This expected decrease was observed when flies were exposed to hyperoxia, which oxidizes aconitase, and when they were given fluoroacetate, an inhibitor of aconitase. The identification of a specific target of oxidative damage during aging allows for the assessment of the physiological age of a specific individual and provides a method for the evaluation of treatments designed to affect the aging process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of ∼36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC. Using in vitro assays, we characterized the ability of RanBP2 to bind p97, a cytosolic factor implicated in the association of the nuclear localization signal receptor with the NPC. We found that RanGTP promotes the binding of p97 to RanBP2, whereas it inhibits the binding of p97 to other FG repeat nucleoporins. These data suggest that RanGTP acts to specifically target p97 to RanBP2, where p97 may support the binding of an nuclear localization signal receptor/substrate complex to RanBP2 in an early step of nuclear import.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A definite diagnosis of prion diseases such as Creutzfeldt–Jakob disease (CJD) relies on the detection of pathological prion protein (PrPSc). However, no test for PrPSc in cerebrospinal fluid (CSF) has been available thus far. Based on a setup for confocal dual-color fluorescence correlation spectroscopy, a technique suitable for single molecule detection, we developed a highly sensitive detection method for PrPSc. Pathological prion protein aggregates were labeled by specific antibody probes tagged with fluorescent dyes, resulting in intensely fluorescent targets, which were measured by dual-color fluorescence intensity distribution analysis in a confocal scanning setup. In a diagnostic model system, PrPSc aggregates were detected down to a concentration of 2 pM PrPSc, corresponding to an aggregate concentration of approximately 2 fM, which was more than one order of magnitude more sensitive than Western blot analysis. A PrPSc-specific signal could also be detected in a number of CSF samples from patients with CJD but not in control samples, providing the basis for a rapid and specific test for CJD and other prion diseases. Furthermore, this method could be adapted to the sensitive detection of other disease-associated amyloid aggregates such as in Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ras-related small GTPases Rac, Rho, Cdc42, and RalA bind filamin, an actin filament-crosslinking protein that also links membrane and other intracellular proteins to actin. Of these GTPases only RalA binds filamin in a GTP-specific manner, and GTP-RalA elicits actin-rich filopods on surfaces of Swiss 3T3 cells and recruits filamin into the filopodial cytoskeleton. Either a dominant negative RalA construct or the RalA-binding domain of filamin 1 specifically block Cdc42-induced filopod formation, but a Cdc42 inhibitor does not impair RalA’s effects, which, unlike Cdc42, are Rac independent. RalA does not generate filopodia in filamin-deficient human melanoma cells, whereas transfection of filamin 1 restores the functional response. RalA therefore is a downstream intermediate in Cdc42-mediated filopod production and uses filamin in this pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain plant viruses encode suppressors of posttranscriptional gene silencing (PTGS), an adaptive antiviral defense response that limits virus replication and spread. The tobacco etch potyvirus protein, helper component-proteinase (HC-Pro), suppresses PTGS of silenced transgenes. The effect of HC-Pro on different steps of the silencing pathway was analyzed by using both transient Agrobacterium tumefaciens-based delivery and transgenic systems. HC-Pro inactivated PTGS in plants containing a preexisting silenced β-glucuronidase (GUS) transgene. PTGS in this system was associated with both small RNA molecules (21–26 nt) corresponding to the 3′ proximal region of the transcribed GUS sequence and cytosine methylation of specific sites near the 3′ end of the GUS transgene. Introduction of HC-Pro into these plants resulted in loss of PTGS, loss of small RNAs, and partial loss of methylation. These results suggest that HC-Pro targets a PTGS maintenance (as opposed to an initiation or signaling) component at a point that affects accumulation of small RNAs and methylation of genomic DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional regulation in papillomaviruses depends on sequence-specific binding of the regulatory protein E2 to several sites in the viral genome. Crystal structures of bovine papillomavirus E2 DNA targets reveal a conformational variant of B-DNA characterized by a roll-induced writhe and helical repeat of 10.5 bp per turn. A comparison between the free and the protein-bound DNA demonstrates that the intrinsic structure of the DNA regions contacted directly by the protein and the deformability of the DNA region that is not contacted by the protein are critical for sequence-specific protein/DNA recognition and hence for gene-regulatory signals in the viral system. We show that the selection of dinucleotide or longer segments with appropriate conformational characteristics, when positioned at correct intervals along the DNA helix, can constitute a structural code for DNA recognition by regulatory proteins. This structural code facilitates the formation of a complementary protein–DNA interface that can be further specified by hydrogen bonds and nonpolar interactions between the protein amino acids and the DNA bases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluoroquinolones are antibacterial agents that attack DNA gyrase and topoisomerase IV on chromosomal DNA. The existence of two fluoroquinolone targets and stepwise accumulation of resistance suggested that new quinolones could be found that would require cells to obtain two topoisomerase mutations to display resistance. For wild-type cells to become resistant, the two mutations must be acquired concomitantly. That is expected to occur infrequently. To identify such compounds, fluoroquinolones were tested for the ability to kill a moderately resistant gyrase mutant. Compounds containing a C8-methoxyl group were particularly lethal, and incubation of wild-type cultures on agar containing C8-methoxyl fluoroquinolones produced no resistant mutant, whereas thousands arose during comparable treatment with control compounds lacking the C8 substituent. When the test strain contained a preexisting topoisomerase IV mutation, which by itself conferred no resistance, equally high numbers of resistant mutants were obtained for C8-methoxyl and control compounds. Thus C8-methoxyl fluoroquinolones required two mutations for expression of resistance. Although highly lethal, C8-methoxyl fluoroquinolones were not more effective than C8-H controls at blocking bacterial growth. Consequently, quinolone action involves two events, which we envision as formation of drug–enzyme–DNA complexes followed by release of lethal double-strand DNA breaks. Release of DNA breaks, which must occur less frequently than complex formation, is probably the process stimulated by the C8-methoxyl group. Understanding this stimulation should provide insight into intracellular quinolone action and contribute to development of fluoroquinolones that prevent selection of resistant bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A human p53 homologue, p63 (p40/p51/p73L/CUSP) that maps to the chromosomal region 3q27–29 was found to produce a variety of transcripts that encode DNA-binding proteins with and without a trans-activation domain (TA- or ΔN-, respectively). The p63 gene locus was found to be amplified in squamous cell carcinoma, and overexpression of ΔNp63 (p40) led to increased growth of transformed cells in vitro and in vivo. Moreover, p63-null mice displayed abnormal epithelial development and germ-line human mutations were found to cause ectodermal dysplasia. We now demonstrate that certain p63 isotypes form complexes with p53. p53 mutations R175H or R248W abolish the association of p53 with p63, whereas V143A or R273H has no effect. Deletion studies suggest that the DNA-binding domains of both p53 and p63 mediate the association. Overexpression of wild type but not mutant (R175H) p53 results in the caspase-dependent degradation of certain ΔNp63 proteins (p40 and ΔNp63α). The association between p53 and ΔNp63 supports a previously unrecognized role for p53 in regulation of ΔNp63 stability. The ability of p53 to mediate ΔNp63 degradation may balance the capacity of ΔNp63 to accelerate tumorigenesis or to induce epithelial proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p19ARF suppresses the growth of cells lacking p53 through an unknown mechanism. p19ARF was found to complex with transcription factors E2F1, -2, and -3. Levels of endogenous or ectopically expressed E2F1, -2, and -3, but not E2F6, were reduced after synthesis of p19ARF, through a mechanism involving increased turnover. p19ARF-induced degradation of E2F1 depended on a functional proteasome, and E2F1 was relocalized to nucleoli when coexpressed with p19ARF. Consistent with reduced levels of E2F1 and E2F3, the proliferation of cells defective for p53 function was suppressed by p19ARF, and the effect was partially reversed by ectopic overexpression of E2F1. These results suggest a broader role for p19ARF as a tumor suppressor, in which targeting of certain E2F species may cooperate with stimulation of the p53 pathway to counteract oncogenic growth signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a mouse model in which p27Kip1 transgene expression is spatially restricted to the central nervous system neuroepithelium and temporally controlled with doxycycline. Transgene-specific transcripts are detectable within 6 h of doxycycline administration, and maximum nonlethal expression is approached within 12 h. After 18–26 h of transgene expression, the G1 phase of the cell cycle is estimated to increase from 9 to 13 h in the neocortical neuroepithelium, the maximum G1 phase length attainable in this proliferative population in normal mice. Thus our data establish a direct link between p27Kip1 and control of G1 phase length in the mammalian central nervous system and unveil intrinsic mechanisms that constrain the G1 phase length to a putative physiological maximum despite ongoing p27Kip1 transgene expression.