2 resultados para TRIVALENT
em National Center for Biotechnology Information - NCBI
Resumo:
Calcium ion transiently blocks Na+ channels, and it shortens the time course for closing of their activation gates. We examined the relation between block and closing kinetics by using the Na+ channels natively expressed in GH3 cells, a clonal line of rat pituitary cells. To simplify analysis, inactivation of the Na+ channels was destroyed by including papain in the internal medium. All divalent cations tested, and trivalent La3+, blocked a progressively larger fraction of the channels as their concentration increased, and they accelerated the closing of the Na+ channel activation gate. For calcium, the most extensively studied cation, there is an approximately linear relation between the fraction of the channels that are calcium-blocked and the closing rate. Extrapolation of the data to very low calcium suggests that closing rate is near zero when there is no block. Analysis shows that, almost with certainty, the channels can close when occupied by calcium. The analysis further suggests that the channels close preferentially or exclusively from the calcium-blocked state.
Resumo:
A Ca2+ channel from root-tip endomembranes of garden cress (Lepidium sativum L.) (LCC1) was characterized using the planar lipid-bilayer technique. Investigation of single-channel recordings revealed that LCC1 is voltage gated and strongly rectifying. In symmetrical 50 mm CaCl2 solutions, the single-channel conductance was 24 picosiemens. LCC1 showed a moderate selectivity for Ca2+ over K+ (9.4:1) and was permeable for a range of divalent cations (Ca2+, Ba2+, and Sr2+). In contrast to Bryonia dioica Ca2+ channel 1, a Ca2+-selective channel from the endoplasmic reticulum of touch-sensitive tendrils, LCC1 showed no bursting channel activity and had a low open probability and mean open time (2.83 ms at 50 mV). Inhibitor studies demonstrated that LCC1 is blocked by micromolar concentrations of erythrosin B (inhibitor concentration for 50% inhibition [IC50] = 1.8 μm) and the trivalent cations La3+ (IC50 = 5 μm) and Gd3+ (IC50 = 10 μm), whereas verapamil showed no blocking effect. LCC1 may play an important role in the regulation of the cytoplasmic free Ca2+ concentration in root-tip and/or root-cap cells. The question of whether this ion channel is part of the gravitropic signal transduction pathway deserves further investigation.